Skip to main content
Log in

Scattering Analysis and Optimization of Spherical Acoustic Cloak with Unideal Pentamode Material

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The acoustic scattering is theoretically studied in this paper for three-dimensional spherical cloak composed of unideal pentamode material, for which small shear rigidity is always inevitable for a real designed microstructure. A theoretical formulation is developed to efficiently evaluate the cloaking performance. The generic scattering feature of the cloak and the effects of material imperfectness and inner cloak boundary constraints are systematically examined. The preferable constraint type and the critical imperfectness parameter of the material are identified for possible broadband invisibility. In addition, a very practical lining shell scheme is proposed to tune the constraint strength on the inner boundary. By combining the theoretical model with optimization algorithm, it is further proved that the cloak can be reduced by several piecewise-uniform layers and optimized to achieve excellent invisibility in targeted frequency bands. The study will provide valuable guidance for the future microstructural design of cloaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leonhardt U. Optical conformal mapping. Science. 2006;312:1777–80.

    Article  MathSciNet  Google Scholar 

  2. Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312:1780–2.

    Article  MathSciNet  Google Scholar 

  3. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84:4184–7.

    Article  Google Scholar 

  4. Nassar H, Chen YY, Huang GL. A degenerate polar lattice for cloaking in full two-dimensional elastodynamics and statics. Proc R Soc A. 2019;474:20180523.

    Article  MathSciNet  Google Scholar 

  5. Nassar H, Chen YY, Huang GL. Isotropic polar solids for conformal transformation elasticity and cloaking. J Mech Phys Solids. 2019;129:229–43.

    Article  MathSciNet  Google Scholar 

  6. Cummer SA, Schurig D. One path to acoustic cloaking. N J Phys. 2007;9:45.

    Article  Google Scholar 

  7. Chen HY, Chan CT. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett. 2007;91:183518.

    Article  Google Scholar 

  8. Christensen J, de Abajo FJG. Anisotropic metamaterials for full control of acoustic waves. Phys Rev Lett. 2012;108:124301.

    Article  Google Scholar 

  9. Milton GW, Willis JR. On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A. 2007;463:855–80.

    Article  MathSciNet  Google Scholar 

  10. Torrent D, Sanchez-Dehesa J. Anisotropic mass density by radially periodic fluid structures. Phys Rev Lett. 2010;105:430117.

    Article  Google Scholar 

  11. Popa BI, Wang W, Konneker A, Cummer SA, Rohde CA, Martin TP, Orris GJ, Guild MD. Anisotropic acoustic metafluid for underwater operation. J Acoust Soc Am. 2016;139:3325.

    Article  Google Scholar 

  12. Popa B, Zigoneanu L, Cummer SA. Experimental acoustic ground cloak in air. Phys Rev Lett. 2011;106:253901.

    Article  Google Scholar 

  13. Milton GW, Cherkaev AV. Which elasticity tensors are realizable? J Eng Mater Technol. 1995;117:483–93.

    Article  Google Scholar 

  14. Norris AN. Acoustic cloaking theory. Proc R Soc A. 2008;464:2411–34.

    Article  MathSciNet  Google Scholar 

  15. Gokhale NH, Cipolla JL, Norris AN. Special transformations for pentamode acoustic cloaking. J Acoust Soc Am. 2012;132:2932–41.

    Article  Google Scholar 

  16. Chen Y, Liu X, Hu G. Design of arbitrary shaped pentamode acoustic cloak based on quasi-symmetric mapping gradient algorithm. J Acoust Soc Am. 2016;140:L405–9.

    Article  Google Scholar 

  17. Cipolla J, Gokhale N, Norris A, Nagy A. Design of inhomogeneous pentamode metamaterials for minimization of scattering. J Acoust Soc Am. 2011;130:2332.

    Article  Google Scholar 

  18. Layman CN, Naify CJ, Martin TP, Calvo DC, Orris GJ. Highly anisotropic elements for acoustic pentamode applications. Phys Rev Lett. 2013;111:24302.

    Article  Google Scholar 

  19. Hladky-Hennion AC, Vasseur JO, Haw G, Croenne C, Haumesser L, Norris AN. Negative refraction of acoustic waves using a foam-like metallic structure. Appl Phys Lett. 2013;102:144103.

    Article  Google Scholar 

  20. Cai X, Wang L, Zhao Z, Zhao A, Zhang X, Wu T, Chen H. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters. Appl Phys Lett. 2016;109:131904.

    Article  Google Scholar 

  21. Zhao A, Zhao Z, Zhang X, Cai X, Wang L, Wu T, Chen H. Design and experimental verification of a water-like pentamode material. Appl Phys Lett. 2017;110:011907.

    Article  Google Scholar 

  22. Zhaoyong S, Han J, Yi C, Zhen W, Jun Y. Design of an underwater acoustic bend by pentamode metafluid. J Acoust Soc Am. 2018;143:1029.

    Article  Google Scholar 

  23. Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M. On the practicability of pentamode mechanical metamaterials. Appl Phys Lett. 2012;100:191901.

    Article  Google Scholar 

  24. Kadic M, Bückmann T, Schittny R, Wegener M. On anisotropic versions of three-dimensional pentamode metamaterials. N J Phys. 2013;15:023029.

    Article  Google Scholar 

  25. Schittny R, Bückmann T, Kadic M, Wegener M. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl Phys Lett. 2013;103:231905.

    Article  Google Scholar 

  26. Huang Y, Lu XG, Liang GY, Xu Z. Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes. Phys Lett A. 2016;380:1334–8.

    Article  Google Scholar 

  27. Chen Y, Liu XN, Hu GK. Latticed pentamode acoustic cloak. Sci Rep. 2015;5:15745.

    Article  Google Scholar 

  28. Chen Y, Zheng M, Liu X, Bi Y, Sun Z, Xiang P, Yang J, Hu G. Broadband solid cloak for underwater acoustics. Phys Rev B. 2017;95:180104.

    Article  Google Scholar 

  29. Scandrett CL, Boisvert JE, Howarth TR. Acoustic cloaking using layered pentamode materials. J Acoust Soc Am. 2010;127:2856–64.

    Article  Google Scholar 

  30. Scandrett CL, Boisvert JE, Howarth TR. Broadband optimization of a pentamode-layered spherical acoustic waveguide. Wave Motion. 2011;48:505–14.

    Article  MathSciNet  Google Scholar 

  31. Chen WQ, Bian ZG, Ding HJ. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. Int J Mech Sci. 2004;46:159–71.

    Article  Google Scholar 

  32. Hasheminejad SM, Rajabi M. Acoustic resonance scattering from a submerged functionally graded cylindrical shell. J Sound Vibr. 2007;302:208–28.

    Article  Google Scholar 

  33. Flax L, Dragonette LR, Überall H. Theory of elastic resonance excitation by sound scattering. J Acoust Soc Am. 1978;63:723.

    Article  Google Scholar 

  34. Norris AN. Resonant acoustic scattering from solid targets. J Acoust Soc Am. 1990;88:505.

    Article  Google Scholar 

  35. Cheng Y, Liu XJ. Resonance effects in broadband acoustic cloak with multilayered homogeneous isotropic materials. Appl Phys Lett. 2008;93:71903.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11372035, 11632003, 11472044, 11802017) and the Postdoctoral Innovation Talent Support Program (No. BX20180040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Liu.

Appendix

Appendix

The momentum equilibrium, geometric and constitutive equations in cloak’s spherical coordinates are listed here,

(A1)
(A2)
(A3)

substituting into which the displacement and stress decomposition Eqs. (13) and (14), the r-dependent state vector and Eq. (15) can be concluded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Chen, Y. & Liu, X. Scattering Analysis and Optimization of Spherical Acoustic Cloak with Unideal Pentamode Material. Acta Mech. Solida Sin. 33, 347–360 (2020). https://doi.org/10.1007/s10338-019-00139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00139-x

Keywords

Navigation