Skip to main content
Log in

Soft Fibrous Structures in Nature as Liquid Catcher

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Past decades have witnessed the explosive growth of interest in the field of bio-inspired materials, of which the structures and properties can be well utilized for industrial and bioengineering applications. Among these structures, the natural fibrous structures propose diverse strategies to adapt to their environment, offering inspirations for versatile applications, especially droplet manipulation. With various well-adapted soft structures and materials, these fibrous structures show good control over their interaction with liquids (e.g., water), providing a database full of effective solutions to these droplet-related scientific and technical problems (e.g., colloidal synthesis, single-cell gene sequencing, drug delivery and solution synthesis). In this review, the current achievements in water collection by multiple fibrous structures are highlighted; the structures, basic models, bio-inspired structures and their applications are presented; and the current challenges and future prospects for the development of bio-inspired fibrous structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hosseini A, Villegas M, Yang J, Badv M, Weitz JI, Soleymani L, Didar TF. Conductive electrochemically active lubricant-infused nanostructured surfaces attenuate coagulation and enable friction-less droplet manipulation. Adv Mater Interfaces. 2018;5(18):1800617.

    Article  Google Scholar 

  2. Yasuga H, Kamiya K, Takeuchi S, Miki N. Self-generation of two-dimensional droplet array using oil–water immiscibility and replacement. Lap Chip. 2018;18(7):1130–7.

    Article  Google Scholar 

  3. Juliar BA, Bromley MM, Moncion A, Jones DC, O’Neill EG, Wilson CG, Franceschi RT, Fabiilli ML. In situ transfection by controlled release of lipoplexes using acoustic droplet vaporization. Adv Healthc Mater. 2016;5(14):1764–74.

    Article  Google Scholar 

  4. Felten J, Hall H, Jaumot J, Tauler R, De Juan A, Gorzsás A. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (mcr-als). Nat Protoc. 2015;10(2):217.

    Article  Google Scholar 

  5. Xu S, Liu T, Mu Y, Wang YF, Chi Z, Lo CC, Liu S, Zhang Y, Lien A, Xu J. An organic molecule with asymmetric structure exhibiting aggregation-induced emission, delayed fluorescence, and mechanoluminescence. Angew Chem. 2015;127(3):888–92.

    Article  Google Scholar 

  6. Zheng Y, Bai H, Huang Z, Tian X, Nie F-Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature. 2010;463(7281):640.

    Article  Google Scholar 

  7. Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun. 2012;3:1247.

    Article  Google Scholar 

  8. Meng Q, Wang Q, Liu H, Jiang L. A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer. NPG Asia Mater. 2014;6(9):e125.

    Article  Google Scholar 

  9. Lorenceau É, Quéré D. Drops on a conical wire. J Fluid Mech. 2004;510:29–45.

    Article  MATH  Google Scholar 

  10. Yamamoto T, Meng Q, Liu H, Jiang L, Doi M. Instability of liquids in flexible fiber brushes under applied pressure. Langmuir. 2016;32(13):3262–8.

    Article  Google Scholar 

  11. Bai H, Tian X, Zheng Y, Ju J, Zhao Y, Jiang L. Direction controlled driving of tiny water drops on bioinspired artificial spider silks. Adv Mater. 2010;22(48):5521–5.

    Article  Google Scholar 

  12. Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun. 2013;4:2276.

    Article  Google Scholar 

  13. Sharma V, Sharma M, Kumar S, Krishnan V. Investigations on the fog harvesting mechanism of bermuda grass (cynodon dactylon). Flora. 2016;224:59–65.

    Article  Google Scholar 

  14. Chen H, Ran T, Gan Y, Zhou J, Zhang Y, Zhang L, Zhang D, Jiang L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater. 2018;17(10):935.

    Article  Google Scholar 

  15. Chen D, Niu S, Zhang J, Mu Z, Chen H, Zhang D, Yao Z, Han Z, Ren L. Superfast liquid transfer strategy through sliding on a liquid membrane inspired from scorpion setae. Adv Mater Interfaces. 2018;5(20):1800802.

    Article  Google Scholar 

  16. Daniel S, Chaudhury MK, Chen JC. Fast drop movements resulting from the phase change on a gradient surface. Science. 2001;291(5504):633–6.

    Article  Google Scholar 

  17. Wang P, Bian R, Meng Q, Liu H, Jiang L. Bioinspired dynamic wetting on multiple fibers. Adv Mater. 2017;29:1703042.

    Article  Google Scholar 

  18. Li J, Guo Z. Spontaneous directional transportations of water droplets on surfaces driven by gradient structures. Nanoscale. 2018;10:13814–31.

    Article  Google Scholar 

  19. Reis P, Hure J, Jung S, Bush J, Clanet C. Grabbing water. Soft Matter. 2010;6(22):5705.

    Article  Google Scholar 

  20. Chen D, Tan L, Liu H, Hu J, Li Y, Tang F. Fabricating superhydrophilic wool fabrics. Langmuir. 2009;26(7):4675–9.

    Article  Google Scholar 

  21. Bai H, Sun R, Ju J, Yao X, Zheng Y, Jiang L. Large-scale fabrication of bioinspired fibers for directional water collection. Small. 2011;7(24):3429–33.

    Article  Google Scholar 

  22. Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip. 2004;4(6):576–80.

    Article  Google Scholar 

  23. Tian X, Bai H, Zheng Y, Jiang L. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Adv Funct Mater. 2011;21(8):1398–402.

    Article  Google Scholar 

  24. Henke P, Kozak H, Artemenko A, Kubát P, Forstová J, Mosinger J. Superhydrophilic polystyrene nanofiber materials generating O\(_2\) (1\(\updelta \)g): postprocessing surface modifications toward efficient antibacterial effect. ACS Appl Mater Interfaces. 2014;6(15):13007–14.

    Article  Google Scholar 

  25. Dong H, Wang N, Wang L, Bai H, Wu J, Zheng Y, Zhao Y, Jiang L. Bioinspired electrospun knotted microfibers for fog harvesting. Chem Phys Chem. 2012;13(5):1153–6.

    Article  Google Scholar 

  26. Hou Y, Gao L, Feng S, Chen Y, Xue Y, Jiang L, Zheng Y. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Chem Commun. 2013;49(46):5253–5.

    Article  Google Scholar 

  27. Wu Z, Wang J, Zhao Z, Yu Y, Shang L, Zhao Y. Microfluidic generation of bioinspired spindle-knotted graphene microfibers for oil absorption. ChemPhyChem. 2018;19(16):1990–4.

    Article  Google Scholar 

  28. Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angew Chem. 2015;54(11):3387–99.

    Article  Google Scholar 

  29. Shang L, Fu F, Cheng Y, Yu Y, Wang J, Gu Z, Zhao Y. Bioinspired multifunctional spindle-knotted microfibers from microfluidics. Small. 2017;13(4):1600286.

    Article  Google Scholar 

  30. Cao M, Ju J, Li K, Dou S, Liu K, Jiang L. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv Funct Mater. 2014;24(21):3235–40.

    Article  Google Scholar 

  31. Zhang M, Zheng Y. Bioinspired structure materials to control water-collecting properties. Mater Today: Proc. 2016;3(2):696–702.

    Google Scholar 

  32. Peng Y, He Y, Yang S, Ben S, Cao M, Li K, Liu K, Jiang L. Magnetically induced fog harvesting via flexible conical arrays. Adv Funct Mater. 2015;25(37):5967–71.

    Article  Google Scholar 

  33. Peng J, Yu P, Zeng S, Liu X, Chen J, Xu W. Application of click chemistry in the fabrication of cactus-like hierarchical particulates for sticky superhydrophobic surfaces. J Phys Chem. 2010;114(13):5926–31.

    Google Scholar 

  34. Han YL, Li M, Yang Q, Huang G, Liu H, Qin Y, Genin GM, Li F, Lu TJ, Xu F. Collective wetting of a natural fibrous system and its application in pump-free droplet transfer. Adv Funct Mater. 2017;27(22):1606607.

    Article  Google Scholar 

  35. Hou Y, Chen Y, Xue Y, Wang L, Zheng Y, Jiang L. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. Soft Matter. 2012;8(44):11236.

    Article  Google Scholar 

  36. Chen Y, Wang L, Xue Y, Jiang L, Zheng Y. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance. Sci Rep. 2013;3:2927.

    Article  Google Scholar 

  37. Chen Y, He J, Wang L, Xue Y, Zheng Y, Jiang L. Excellent bead-on-string silkworm silk with drop capturing abilities. J Mater Chem A. 2014;2:1230–4.

    Article  Google Scholar 

  38. Jin Y, Yang D, Kang D, Jiang X. Fabrication of necklace-like structures via electrospinning. Langmuir. 2010;26(2):1186–90.

    Article  Google Scholar 

  39. Song C, Zhao L, Zhou W, Zhang M, Zheng Y. Bioinspired wet-assembly fibers: from nanofragments to microhumps on string in mist. J Mater Chem A. 2014;2(25):9465.

    Article  Google Scholar 

  40. Ji X, Guo S, Zeng C, Wang C, Zhang L. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device. RSC Adv. 2015;5(4):2517–22.

    Article  Google Scholar 

  41. Wu Z, Wang J, Zhao Z, Yu Y, Shang L, Zhao Y. Microfluidic generation of bioinspired spindle-knotted graphene microfibers for oil absorption. ChemPhysChem. 2017;19(16):1990–4.

    Article  Google Scholar 

  42. Tian X, Chen Y, Zheng Y, Bai H, Jiang L. Controlling water capture of bioinspired fibers with hump structures. Adv Mater. 2011;23(46):5486–91.

    Article  Google Scholar 

  43. Dong H, Zheng Y, Wang N, Bai H, Wang L, Wu J, Zhao Y, Jiang L. Highly efficient fog collection unit by integrating artificial spider silks. Adv Mater Interfaces. 2016;3(11):1500831.

    Article  Google Scholar 

  44. Wang H, Zhou H, Niu H, Zhang J, Du Y, Lin T. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil–water separation performance. Adv Mater Interfaces. 2015;2(4):1400506.

    Article  Google Scholar 

  45. Bai F, Wu J, Gong G, Guo L. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection. Adv Sci. 2015;2(7):1500047.

    Article  Google Scholar 

  46. Meng Qa, Xu B, He M, Bian R, Meng L, Wang P, Jiang L, Liu H. Bioinspired controllable liquid manipulation by fibrous array driven by elasticity. ACS Appl Mater Interfaces. 2018;10(32):26819–24.

    Article  Google Scholar 

  47. Bai H, Ju J, Zheng Y, Jiang L. Functional fibers with unique wettability inspired by spider silks. Adv Mater. 2012;24(20):2786–91.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11532009, 11522219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lu, T. & Xu, F. Soft Fibrous Structures in Nature as Liquid Catcher. Acta Mech. Solida Sin. 32, 580–590 (2019). https://doi.org/10.1007/s10338-019-00102-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00102-w

Keywords

Navigation