Skip to main content
Log in

Electromechanical Fields and Their Influence on the Internal Quantum Efficiency of GaN-Based Light-Emitting Diodes

  • Original Paper
  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2018

This article has been updated

Abstract

The effect of electromechanical fields, i.e., polarization fields, on the efficiency droop of GaN-based light-emitting diodes is presented using both experimental and numerical analyses. The role of incorporating such polarization charge density in device performance is numerically investigated and further compared with the experimental results of internal quantum efficiency of three different devices in consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 22 November 2018

    In all the articles in Acta Mechanica Solida Sinica, Volume 31, Issues 1–4, the copyright is incorrectly displayed as “The Chinese Society of Theoretical and Applied Mechanics and Technology ” where it should be “The Chinese Society of Theoretical and Applied Mechanics”.

References

  1. Gardner N, Müller G, Shen Y, Chen G, Watanabe S, Götz W, et al. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2. Appl Phys Lett. 2007;91(24):243506.

    Article  Google Scholar 

  2. Shen Y, Mueller G, Watanabe S, Gardner N, Munkholm A, Krames M. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett. 2007;91(14):1101.

    Google Scholar 

  3. Zhang M, Bhattacharya P, Singh J, Hinckley J. Direct measurement of auger recombination in In 0.1 Ga 0.9 N/GaN quantum wells and its impact on the efficiency of In 0.1 Ga 0.9 N/GaN multiple quantum well light emitting diodes. Appl Phys Lett. 2009;95(20):1108.

    Google Scholar 

  4. Usman M, Saba K, Han D-P, Muhammad N, Farwa S, Muhammad R, et al. Degradation effect of Auger recombination and built-in polarization field on GaN-based light-emitting diodes. AIP Adv. 2018;8(1):015005.

    Article  Google Scholar 

  5. Shim J-I, Kim H-S, Shin D-S, Yoo H-Y. An explanation of efficiency droop in InGaN-based light emitting diodes: saturated radiative recombination rate at randomly distributed In-rich active areas. J Korean Phys Soc. 2011;58(3):503–8.

    Article  Google Scholar 

  6. Cao X, Yang Y, Guo H. On the origin of efficiency roll-off in InGaN-based light-emitting diodes. J Appl Phys. 2008;104(9):093108.

    Article  Google Scholar 

  7. Chichibu SF, Azuhata T, Sugiyama M, Kitamura T, Ishida Y, Okumura H, et al. Optical and structural studies in InGaN quantum well structure laser diodes. J Vac Sci Technol B. 2001;19(6):2177–83.

    Article  Google Scholar 

  8. Xie J, Ni X, Fan Q, Shimada R, Özgür Ü, Morkoç H. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Appl Phys Lett. 2008;93(12):1107.

    Article  Google Scholar 

  9. Ling S-C, Lu T-C, Chang S-P, Chen J-R, Kuo H-C, Wang S-C. Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes. Appl Phys Lett. 2010;96(23):231101.

    Article  Google Scholar 

  10. Usman M, Kim H, Shim J-I, Shin D-S. Measurement of piezoelectric field in single-and double-quantum-well green LEDs using electroreflectance spectroscopy. Jpn J Appl Phys. 2014;53(9):098002.

    Article  Google Scholar 

  11. Usman M, Saba K, Han D-P, Muhammad N. Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer. Superlattices Microstruct. 2018;113:585–91.

    Article  Google Scholar 

  12. Hader J, Moloney JV, Koch SW. Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes. Appl Phys Lett. 2010;96(22):221106.

    Article  Google Scholar 

  13. David A, Grundmann MJ. Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl Phys Lett. 2010;96(10):103504.

    Article  Google Scholar 

  14. Ryu H-Y, Kim H-S, Shim J-I. Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl Phys Lett. 2009;95(8):081114.

    Article  Google Scholar 

  15. Özgür Ü, Liu H, Li X, Ni X, Morkoc H. GaN-based light-emitting diodes: efficiency at high injection levels. Proc IEEE. 2010;98(7):1180–96.

    Article  Google Scholar 

  16. Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solidi. 2010;207(10):2217–25.

    Article  Google Scholar 

  17. Piprek J, editor Unified model for the GaN LED efficiency droop. In: SPIE OPTO; 2011: international society for optics and photonics.

  18. Peng L-H, Chuang C-W, Lou L-H. Piezoelectric effects in the optical properties of strained InGaN quantum wells. Appl Phys Lett. 1999;74(6):795–7.

    Article  Google Scholar 

  19. Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys Rev B. 1997;56(16):R10024.

    Article  Google Scholar 

  20. Chichibu S, Azuhata T, Sota T, Nakamura S. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl Phys Lett. 1996;69(27):4188–90.

    Article  Google Scholar 

  21. Koukitu A, Takahashi N, Taki T, Seki H. Thermodynamic analysis of the MOVPE growth of \({\text{ In }}_{x} {\text{ Ga }}_{1- x}{\text{ N }}\). J Cryst Growth. 1997;170(1):306–11.

    Article  Google Scholar 

  22. Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Zhou L, Harbers G, et al. Status and future of high-power light-emitting diodes for solid-state lighting. J Disp Technol. 2007;3(2):160–75.

    Article  Google Scholar 

  23. Shimizu M, Hiramatsu K, Sawaki N. Metalorganic vapor phase epitaxy growth of \(({\text{ In }}_{x}{\text{ Ga }}_{1-x} {\text{ N/GaN }})\) n layered structures and reduction of indium droplets. J Cryst Growth. 1994;145(1):209–13.

    Article  Google Scholar 

  24. Crosslight®. APSYS (advanced physical models of semiconductor devices). http://www.crosslight.com/products/apsys/.

  25. Chuang S, Chang C. \(k\cdot p\) method for strained wurtzite semiconductors. Phys Rev B. 1996;54(4):2491.

    Article  MathSciNet  Google Scholar 

  26. Chuang S, Chang C. A band-structure model of strained quantum-well wurtzite semiconductors. Semicond Sci Technol. 1997;12(3):252.

    Article  Google Scholar 

  27. Sze S. Physics of semiconductor devices. New York: Wiley; 1981.

    Google Scholar 

  28. Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl Phys Lett. 2002;80(7):1204–6.

    Article  Google Scholar 

  29. Meneghini M, Trivellin N, Meneghesso G, Zanoni E, Zehnder U, Hahn B. A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes. J Appl Phys. 2009;106(11):114508.

    Article  Google Scholar 

  30. Shen Y, Mueller G, Watanabe S, Gardner N, Munkholm A, Krames M. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett. 2007;91(14):141101.

    Article  Google Scholar 

  31. Zhang H, Miller E, Yu E, Poblenz C, Speck J. Measurement of polarization charge and conduction-band offset at \({\text{ In }}_{x}{\text{ Ga }}_{1- x}{\text{ N/GaN }}\) heterojunction interfaces. Appl Phys Lett. 2004;84(23):4644–6.

    Article  Google Scholar 

  32. Renner F, Kiesel P, Döhler G, Kneissl M, Van de Walle C, Johnson N. Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl Phys Lett. 2002;81(3):490–2.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Jong-In Shim and Prof. Dong-Soo Shin for the useful discussion. The authors appreciate Higher Education Commission of Pakistan and Hanyang University, South Korea, for providing the useful resources for this study. The authors also acknowledge the support of Crosslight\({\circledR }\) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazeer Muhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Saba, K., Jahangir, A. et al. Electromechanical Fields and Their Influence on the Internal Quantum Efficiency of GaN-Based Light-Emitting Diodes. Acta Mech. Solida Sin. 31, 383–390 (2018). https://doi.org/10.1007/s10338-018-0013-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0013-y

Keywords

Navigation