Skip to main content

Advertisement

Log in

Development and Validation of a Modified QuEChERS Method for the Analysis of Bisphenols in Meats by UPLC-MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A reliable and affordable QuEChERS (quick, easy, cheap, effective, rugged, and safe) methodology in combination with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) was successfully developed and validated for the determination of eight bisphenols (BPs) residues containing in meats (chicken, duck, beef, pork, fish, shrimp, and mutton). A novel QuEChERS method optimization was carried out in terms of process efficiency (PE), matrix effect (ME), and extraction recovery (RE). After a simple vortex extraction of the samples with acetonitrile, 1 g sodium acetate was used for salting out (NaAC), and 100 mg primary secondary amine (PSA) purifying reagents were used for purification. The properties of the sorbents were assessed by the obtained parameters, such as matrix effect (ME), linearity, sensitivity, accuracy, and precision. Under the optimal conditions, BPs were well separated on an ACQUITY UPLC BEH ® C18 column in 8 min by gradient elution, and exhibited a good linear relationship (R2 > 0.9988) in the linear range. Moreover, the limits of detection (LODs) and the limits of quantification (LOQs) were located in the range of 0.01– 0.11 μg/kg and 0.03 – 0.37 μg/kg, respectively. The developed method was satisfactory in terms of accuracy (relative recoveries: 76.1% – 113.7%) and precision (relative standard deviations below 10.3%). Finally, the developed method was successfully employed to identify and quantify BPs residues in 28 real meat samples. The proposed QuEChERS-UPLC–MS/MS method is simple, high efficiency, cost-effective, practical, and susceptible to being implemented in routine laboratories to quickly detect the BPs in meats (chicken, duck, beef, pork, fish, shrimp, and mutton). In this sense, the method is useful for obtaining BPs residue data to evaluate the contamination status of BPs in meat food and provide scientific support for scientific supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D (2017) Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 8(2):108

    Article  PubMed  PubMed Central  Google Scholar 

  3. Russo G, Capuozzo A, Barbato F, Irace C, Santamaria R, Grumetto L (2018) Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. Chemosphere 201:432–440

    Article  CAS  PubMed  Google Scholar 

  4. Usman A, Ahmad M (2016) From BPA to its analogues: is it a safe journey? Chemosphere 158:131–142

    Article  CAS  PubMed  Google Scholar 

  5. Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet A-M, Pussemier L, Scippo M-L (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740

    Article  CAS  PubMed  Google Scholar 

  6. Geens T, Goeyens L, Covaci A (2011) Are potential sources for human exposure to bisphenol-A overlooked? Int J Hyg Envir Heal 214(5):339–347

    Article  CAS  PubMed  Google Scholar 

  7. Liao CY, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45(21):9372–9379

    Article  CAS  PubMed  Google Scholar 

  8. Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, Quesada I, Nadal Á (2012) Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 355(2):201–207

    Article  CAS  PubMed  Google Scholar 

  9. Hwang K-A, Park M-A, Kang N-H, Yi B-R, Hyun S-H, Jeung E-B, Choi K-C (2013) Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways. Toxicol Appl Pharm 272(3):637–646

    Article  CAS  Google Scholar 

  10. Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM (2013) Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Persp 121(9):1040–1046

    Article  CAS  Google Scholar 

  11. Park M-A, Choi K-C (2013) Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol 27(1):119–128

    Article  PubMed  CAS  Google Scholar 

  12. Bahelka I, Stupka R, Ítek J, Prysl M (2021) The impact of bisphenols on reproductive system and on offspring in pigs – A review 2011–2020. Chemosphere 263(3):128203

    Article  CAS  PubMed  Google Scholar 

  13. Skledar DG, Mašič LP (2016) Bisphenol A and its analogs: do their metabolites have endocrine activity? Environ Toxicol Pharm 47:182–199

    Article  CAS  Google Scholar 

  14. Cy L, Kannan K (2013) Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agr Food Chem 61(19):4655–4662

    Article  CAS  PubMed  Google Scholar 

  15. Žalmanová T, Hošková K, Nevoral J, Prokešová Š, Zámostná K, Kott T, Petr J (2016) Bisphenol S instead of bisphenol A: a story of reproductive disruption by regretable substitution-a review. Czech J Anim Sci 61(10):433–449

    Article  Google Scholar 

  16. Wang L, Xue J, Kannan K (2015) Widespread occurrence and accumulation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat. Environ Sci Technol 49(5):3150–3157

    Article  CAS  PubMed  Google Scholar 

  17. Eladak S, Grisin T, Moison D, Guerquin M-J, N’Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R (2015) A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 103(1):11–21

    Article  CAS  PubMed  Google Scholar 

  18. Sosvorova LK, Chlupacova T, Vitku J, Vlk M, Heracek J, Starka L, Saman D, Simkova M, Hampl R (2017) Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta 174:21–28

    Article  CAS  Google Scholar 

  19. Rochester JR, Bolden AL (2015) Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Persp 123(7):643–650

    Article  CAS  Google Scholar 

  20. Gyimah E, Xu H, Dong X, Xc Qiu, Zhang Z, Yq Bu, Akoto O (2021) Developmental neurotoxicity of low concentrations of bisphenol A and S exposure in zebrafish. Chemosphere 262:128045

    Article  CAS  PubMed  Google Scholar 

  21. Pavel Š, Helena Š, Kateřina G, Farah GA, Tomáš M, Vít K, Diana BL, Bruås HL, Roman G, Hana KK (2021) Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities. Science of the Total Environment 751:141801

    Article  CAS  Google Scholar 

  22. Braver-Sewradj SPD, Spronsen RV, Hessel EVS (2020) Substitution of bisphenol A: a review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit Rev Toxicol 50(2):128–147

    Article  CAS  Google Scholar 

  23. Liu J, Zhang L, Lu G, Jiang R, Yan Z, Li Y (2021) Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment – A review. Ecotox Environ Safe 208:111481–111481

    Article  CAS  Google Scholar 

  24. Ygndodu R, Stnda A, Duydu Y (2020) Toxicological Evaluation of Bisphenol A and Its Analogues. Turkish J Pharmaceut Sci 17(4):457–462

    Article  CAS  Google Scholar 

  25. Khim J, Lee K, Kannan K, Villeneuve D, Giesy J, Koh C (2001) Trace organic contaminants in sediment and water from Ulsan Bay and its vicinity. Korea Arch Environ Con Tox 40(2):141–150

    Article  CAS  Google Scholar 

  26. Drewes JE, Hemming J, Ladenburger SJ, Schauer J, Sonzogni W (2005) An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ Res 77(1):12–23

    Article  CAS  PubMed  Google Scholar 

  27. Liao C, Kannan K (2013) Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agr Food Chem 61(19):4655–4662

    Article  CAS  Google Scholar 

  28. Liao CY, Liu F, Guo Y, Moon H-B, Nakata H, Wu Q, Kannan K (2012) Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol 46(16):9138–9145

    Article  CAS  PubMed  Google Scholar 

  29. Hy B, Zy Li, Liu P, Jf P (2010) Spatial distribution and deposition history of nonylphenol and bisphenol A in sediments from the Changjiang River(Yangtze River) Estuary and its adjacent East China Sea. Acta Oceanol Sin 29(05):44–51

    Article  CAS  Google Scholar 

  30. Cao X-L, Perez-Locas C, Dufresne G, Clement G, Popovic S, Beraldin F, Dabeka R, Feeley M (2011) Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Addit Contam 28(6):791–798

    Article  CAS  Google Scholar 

  31. Barbieri MV, Postigo C, Guillem-Argiles N, Monllor-Alcaraz LS, Simionato JI, Stella E, Barcelo D, Lopez de Alda M (2019) Analysis of 52 pesticides in fresh fish muscle by QuEChERS extraction followed by LC-MS/MS determination. Sci Total Environ 653:958–967

    Article  CAS  PubMed  Google Scholar 

  32. Yin Y, Zhao C, Zheng G, Li L, Liu S, Shan Q, Ma L, Zhu X (2018) Development of styrene-divinylbenzene copolymer beads using QuEChERS for simultaneous detection and quantification of 13 perfluorinated compounds in aquatic samples. Microchem J 144:166–171

    Article  CAS  Google Scholar 

  33. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75(13):3019–3030

    Article  CAS  PubMed  Google Scholar 

  34. Li GR, Yu WQ, Xiao ZJ, Long M, Tong LY, Qiu Y (2020) A modified QuEChERS/GC–MS for simultaneous determination of 16 pesticide adjuvant residues in fruits and vegetables. SN Appl. Sci. 2(1):35

    Article  CAS  Google Scholar 

  35. Lehotay SJ, Mastovska K, Lightfield AR, Gates RA (2010) Multi-analyst, multi-matrix performance of the QuEChERS approach for pesticide residues in foods and feeds using HPLC/MS/MS analysis with different calibration techniques. J AOAC Int 93(2):355–367

    Article  CAS  PubMed  Google Scholar 

  36. Hernández-Mesa M, García-Campaña AM, Cruces-Blanco C (2018) Development and validation of a QuEChERS method for the analysis of 5-nitroimidazole traces in infant milk-based samples by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1562:36–46

    Article  PubMed  CAS  Google Scholar 

  37. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    Article  CAS  PubMed  Google Scholar 

  38. Ferrer C, Lozano A, Agüera A, Girón A, Fernández-Alba A (2011) Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J Chromatogr A 1218(42):7634–7639

    Article  CAS  PubMed  Google Scholar 

  39. Xiong W, Jing H, Guo D, Wang Y, Yang F (2021) A novel method for the determination of fungicide residues in tobacco by ultra-performance liquid chromatography-tandem mass spectrometry combined with pass-through solid-phase extraction. Chromatographia 84(8):729–740

    Article  CAS  Google Scholar 

  40. Gao J, Ma C, Duan Q, Gao W, Li H (2021) Simultaneous determination of 16 illegally added drugs in capsule dietary supplements using a QuEChERS method and HPLC–MS/MS. Chromatographia 84:1009–1023

    Article  CAS  Google Scholar 

  41. Cunha SC, Cunha C, Ferreira AR, Fernandes JO (2012) Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Anal Bioanal Chem 404(8):2453–2463

    Article  CAS  PubMed  Google Scholar 

  42. Cunha SC, Inácio T, Almada M, Ferreira R, Fernandes JO (2020) Gas chromatography-mass spectrometry analysis of nine bisphenols in canned meat products and human risk estimation. Food Res Int 135:109293

    Article  CAS  PubMed  Google Scholar 

  43. Adeyi AA, Babalola BA (2019) Bisphenol-A (BPA) in foods commonly consumed in southwest nigeria and its human health risk. Sci Rep 9(1):17458

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yao K, Wen K, Shan W, Xie S, Peng T, Wang J, Jiang H, Shao B (2018) Development of an immunoaffinity column for the highly sensitive analysis of bisphenol A in 14 kinds of foodstuffs using ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr, B: Anal Technol Biomed Life Sci 1080:50

    Article  CAS  Google Scholar 

  45. Yao K, Zhang J, Yin J, Zhao Y, Shao B (2020) Bisphenol A and its analogues in chinese total diets: contaminated levels and risk assessment. Oxid Med Cell Longev 1:1–14

    Google Scholar 

  46. Cao XL, Kosarac I, Popovic S, Zhou S, Smith D, Dabeka R (2019) LC-MS/MS analysis of bisphenol S and five other bisphenols in total diet food samples. Food Addit Contam 36(11):1740–1747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Science and Technology Planning Project of Guangyuan City (No. 19ZDYF0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuerong Tan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Jin, Q., Lu, J. et al. Development and Validation of a Modified QuEChERS Method for the Analysis of Bisphenols in Meats by UPLC-MS/MS. Chromatographia 85, 433–445 (2022). https://doi.org/10.1007/s10337-022-04149-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04149-9

Keywords

Navigation