Skip to main content
Log in

Long-Term Retention and Separation Reproducibility for Analytical Scale Fused-Core® Columns

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

We present the long-term retention and separation data reproducibility between 2013 and 2020 for analytical scale (4.6 mm internal diameter) superficially porous particle (SPP) columns. The retention factor for a small molecule—naphthalene—separated on 60 randomized manufactured lots, resulted in a 1.04% RSD; for a large molecule—bovine ribonuclease—separated on 31 randomized lots, 1.16% RSD. The peak shapes for three lots within this 7-year period were overlaid to visualize the chromatographic profile reproducibility. Naphthalene’s tailing factor had a % RSD of 4.42 and bovine ribonuclease’s peak width had an % RSD of 2.94; these metrics are sensitive to variability of the total error contribution of the column and system. A small and a large molecule application demonstrated reproducibility using three SPP manufactured lots packed in a narrow bore 2.1 mm i.d. analytical scale format. 15 peaks of the small molecule study resulted with a retention time %RSD reproducibility of ≤ 0.32, and for the large molecule study ≤ 1.12. The information in this study and the detailed discussion of the variability associated to different separation metrics is critical for industries that use HPLC and must adhere to stringent regulatory specifications, e.g., pharmaceutical, food and beverage industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stanley BJ, Foster CR, Guiochon G (1997) On the reproducibility of column performance in liquid chromatography and the role of the packing density. J Chromatogr A 761:41–51. https://doi.org/10.1016/S0021-9673(96)00804-7

    Article  CAS  Google Scholar 

  2. Kele M, Guiochon G (1999) Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns. I. Experimental protocol. J Chromatogr A 830:41–54. https://doi.org/10.1016/S0021-9673(98)00757-2

    Article  CAS  Google Scholar 

  3. Kele M, Guiochon G (2000) Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columnsIV. Results obtained with Luna C18 (2) columns. J Chromatogr A 869:181–209. https://doi.org/10.1016/S0021-9673(99)01092-4

    Article  CAS  PubMed  Google Scholar 

  4. Kele M, Guiochon G (2001) Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns: V. Results obtained with Vydac 218TP C18 columns. J Chromatogr A 913:89–112. https://doi.org/10.1016/S0021-9673(00)01042-6

    Article  CAS  PubMed  Google Scholar 

  5. Kele M, Guiochon G (2002) Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. J Chromatogr A 960:19–49. https://doi.org/10.1016/S0021-9673(01)01227-4

    Article  CAS  Google Scholar 

  6. Gritti F, Guiochon G (2012) Repeatability of the efficiency of columns packed with sub-3μm core-shell particles: Part I. 2.6μm Kinetex-C 18 particles in 4.6mm and 2.1mm×100mm column formats. J Chromatogr A 1252:31–44. https://doi.org/10.1016/j.chroma.2012.05.072

    Article  CAS  PubMed  Google Scholar 

  7. Gritti F, Guiochon G (2012) Repeatability of the efficiency of columns packed with sub-3μm core-shell particles: Part II. 2.7μm Halo-ES-Peptide-C 18 particles in 4.6mm and 2.1mm×100mm column formats. J Chromatogr A 1252:45–55. https://doi.org/10.1016/j.chroma.2012.05.063

    Article  CAS  PubMed  Google Scholar 

  8. Gritti F, Guiochon G (2012) Repeatability of the efficiency of columns packed with sub-3μm core-shell particles: Part III. 2.7μm Poroshell 120 EC-C 18 particles in 4.6mm and 2.1mm × 100mm column formats. J Chromatogr A 1252:56–66. https://doi.org/10.1016/j.chroma.2012.05.080

    Article  CAS  PubMed  Google Scholar 

  9. Hayes R, Ahmed A, Edge T, Zhang H (2014) Core-shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 1357:36–52. https://doi.org/10.1016/j.chroma.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  10. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168. https://doi.org/10.1016/j.chroma.2007.05.090

    Article  CAS  PubMed  Google Scholar 

  11. Guiochon G (2006) The limits of the separation power of unidimensional column liquid chromatography. J Chromatogr A 1126:6–49. https://doi.org/10.1016/j.chroma.2006.07.032

    Article  CAS  PubMed  Google Scholar 

  12. Kirkland JJ, DeStefano JJ (2006) The art and science of forming packed analytical high-performance liquid chromatography columns. J Chromatogr A 1126:50–57. https://doi.org/10.1016/j.chroma.2006.04.027

    Article  CAS  PubMed  Google Scholar 

  13. Tyrrell É, Hilder EF, Shalliker RA, Dicinoski GW, Shellie RA, Breadmore MC, Pohl CA, Haddad PR (2008) Packing procedures for high efficiency, short ion-exchange columns for rapid separation of inorganic anions. J Chromatogr A 1208:95–100. https://doi.org/10.1016/j.chroma.2008.08.056

    Article  CAS  PubMed  Google Scholar 

  14. Schure MR, Maier RS (2006) How does column packing microstructure affect column efficiency in liquid chromatography? J Chromatogr A 1126:58–69. https://doi.org/10.1016/j.chroma.2006.05.066

    Article  CAS  PubMed  Google Scholar 

  15. Broeckhoven K, Desmet G (2012) Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients. J Chromatogr A 1258:66–75. https://doi.org/10.1016/j.chroma.2012.08.035

    Article  CAS  PubMed  Google Scholar 

  16. Reising AE, Schlabach S, Baranau V, Stoeckel D, Tallarek U (2017) Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J Chromatogr A 1513:172–182. https://doi.org/10.1016/j.chroma.2017.07.049

    Article  CAS  PubMed  Google Scholar 

  17. Zelenyánszki D, Lambert N, Gritti F, Felinger A (2019) The effect of column packing procedure on column end efficiency and on bed heterogeneity—experiments with flow-reversal. J Chromatogr A 1603:412–416. https://doi.org/10.1016/j.chroma.2019.05.040

    Article  CAS  PubMed  Google Scholar 

  18. Soliven A, Foley D, Pereira L, Hua S, Edge T, Ritchie H, Dennis GR, Andrew Shalliker R (2014) Improving the performance of narrow-bore HPLC columns using active flow technology. Microchem J 116:230–234. https://doi.org/10.1016/j.microc.2014.05.006

    Article  CAS  Google Scholar 

  19. Gritti F, Kazakevich Y, Guiochon G (2007) Measurement of hold-up volumes in reverse-phase liquid chromatography. Definition and comparison between static and dynamic methods. J Chromatogr A 1161:157–169. https://doi.org/10.1016/j.chroma.2007.05.102

    Article  CAS  PubMed  Google Scholar 

  20. Gritti F (2020) Thermodynamic interpretation of the drift and noise of gradient baselines in reversed-phase liquid chromatography using mobile phase additives. J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.461605

    Article  PubMed  Google Scholar 

  21. Ahmad IAH, Hrovat F, Soliven A, Clarke A, Boswell P, Tarara T, Blasko A (2017) A 14 parameter study of UHPLC’s for method development transfer and troubleshooting. Chromatographia 80:1143–1159. https://doi.org/10.1007/s10337-017-3337-8

    Article  CAS  Google Scholar 

  22. Snyder LR, Dolan JW (2006) High-performance gradient elution: the practical application of the linear-solvent-strength model. John Wiley & Sons

    Book  Google Scholar 

  23. Samuelsson J, Shalliker RA, Fornstedt T (2017) Viscosity contrast effects in analytical scale chromatography—evidence and impact. Microchem J. https://doi.org/10.1016/j.microc.2016.08.007

    Article  Google Scholar 

  24. Shalliker RA, Guiochon G (2010) Solvent viscosity mismatch between the solute plug and the mobile phase: considerations in the applications of two-dimensional HPLC. Analyst. https://doi.org/10.1039/b908633c

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the column manufacturing and quality team at Advanced Materials Technology, Inc., Wilmington, DE.

Author information

Authors and Affiliations

Authors

Contributions

CM: investigation, experiments, review and editing; CF: experiments, review and editing; BPL: experiments, review and editing; AS: conceptualization, writing—original draft, investigation, experiments; and SAS: review and editing.

Corresponding authors

Correspondence to Arianne Soliven or Stephanie A. Schuster.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest. AMT is a column manufacturing company of Fused-Core® particle technology, the main affiliation, where the work was conducted and all authors were employed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McHale, C., Funk, C., Libert, B.P. et al. Long-Term Retention and Separation Reproducibility for Analytical Scale Fused-Core® Columns. Chromatographia 84, 687–694 (2021). https://doi.org/10.1007/s10337-021-04050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04050-x

Keywords

Navigation