Skip to main content
Log in

Diffusion and Dispersion in Tubes in Supercritical Fluid Chromatography Using Sub-2 µm Packings

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Detailed plots of diffusion coefficients, Dm, versus % methanol in CO2 and pressure, P, are presented. Using sub-2 µm particle columns with small ID connector tubing make for large pressure drops, ∆P, across both the system and the column. This creates low average Dm, and large gradients in Dm, slowing the chromatography. The ∆P with 75 µm ID tubing varies non-linearly with flow creating U shaped plots of reduced plate height versus flow rate. Plumbing does but should never change h versus F plots. Using larger ID tubes to estimate the extra-column variance \(\sigma_{e - c}^{2}\) of smaller tubes, by keeping the aspect ratio (L/r) constant, assumes the same constant Dm in both tubes, which is not true in SFC. Contrary to prediction, calculated tube plate count, N, indicates connector tubing is more dispersive in SFC compared to high performance liquid chromatography (HPLC). Current supercritical fluid chromatographs (SFC) have up to 20 × higher variance than appropriate for use with 2.1 and 3 mm columns  ≤ 100 mm long, packed with sub-2 µm particles. Lower volume UV detector flow cells are needed for use with sub-2 µm particles. The modular nature of instruments makes it difficult to further minimize tube lengths while retaining column temperature control. Very small ID tubes, like 75 µm should probably be avoided. It remains difficult to characterize and minimize \(\sigma_{e - c}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source of dispersion with the 75 μm, and probably the 120 µm tubes. 27 cm of 170 µm ID stainless steel tubing in front of, and 30 cm of 170 µm ID tubing after; b 27 cm of 120 µm in front of, and 30 cm of 120 µm tubing after; c 25 cm of 75 µm before, and 30 cm of 75 µm: green triangle-calculated; red circles-measured. 3 mm, 2 µL detector flow cell

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berger TA (2010) Demonstration of high speeds with low pressure drops using 1.8 µm particles in supercritical fluid chromatography (SFC). Chromatographia 72:596–602

    Article  Google Scholar 

  2. Delahaye S, Broeckhoven K, Desmet G, Lynen F (2013) Application of the isopycnic kinetic plot method for elucidating the potential of sub-2 µm and core shell particles in SFC. Talanta 116:1105–1112

    Article  CAS  Google Scholar 

  3. Perrenoud AG-G, Veuthey J-L, Guillarme D (2014) The use of columns packed with sub-2 µm particles in supercritical fluid chromatography. TrAC 63:44–54

    Google Scholar 

  4. DePauw R, Shoykhet CK, Desmet G, Broeckhoven K (2014) Exploring the speed-resolution limits of supercritical fluid chromatography with ultra-high pressures. J Chromatogr A 1374:247–253

    Article  CAS  Google Scholar 

  5. De Pauw R, Shoykhet K, Desmet G, Broeckhoven K (2015) Understanding and diminishing the extra-column band broadening in supercritical fluid chromatography. J Chromatogr A 1403:132–137

    Article  Google Scholar 

  6. Berger TA (2016) Instrument modifications that produced reduced plate heights <2 with sub-2 μm particles and 95 % of theoretical efficiency at k = 2 in supercritical fluid chromatography. J Chromatogr A 1444:129–144

    Article  CAS  Google Scholar 

  7. Berger TA (1955) High efficiency achiral SFC on a 3 × 20 mm column packed with 1.8 µm particles facilitated by a low dispersion chromatograph. Chromatographia 82:537–542. https://doi.org/10.1007/s10337-018-3655-5

    Article  CAS  Google Scholar 

  8. Berger TA (2019) Reduced plate height of 1.65 on a 20 × 3 mm column packed with 1.8 µm particles in supercritical fluid chromatography. Chromatographia 82:971–974

    Article  CAS  Google Scholar 

  9. Berger TA (2016) Kinetic performance of a 50 mm long 1.8 µm chiral column in supercritical fluid chromatography. J Chromatogr 1459:136–144

    Article  CAS  Google Scholar 

  10. Knox JH (1999) Band dispersion in chromatography—a new view of A-term dispersion. J Chromatogr A 831:3–15

    Article  CAS  Google Scholar 

  11. Sternberg JC (1966) Extracolumn contributions to chromatographic bandbroadening. In: Giddings JC, Keller RA (eds) Advances in chromatography, vol 2. Marcel Dekker, New York, pp 205–270

    Google Scholar 

  12. Perrenoud AG-G, Veuthey JL, Guillarme D (2012) Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. J Chromatogr A 1266:158–167

    Article  Google Scholar 

  13. Golay MJE, Atwood JA (2012) Early phases of the dispersion of a sample injected into a Poiseuille Flow. J Chromatogr 186:353–370

    Article  Google Scholar 

  14. Atwood JG, Golay MJE (1981) Dispersion of peaks by short straight open tubes in liquid chromatography systems. J Chromatogr 218:97–122

    Article  CAS  Google Scholar 

  15. Gritti F, McDonald T, Gilar M (2015) Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography. J Chromatogr A 1410:118–128

    Article  CAS  Google Scholar 

  16. Funazukuri T, Kong CY, Kagei S (2006) Binary diffusion coefficients in supercritical fluids: recent progress in measurements and correlations for binary diffusion coefficients. J Supercrit Fluids 3:201–210

    Article  Google Scholar 

  17. Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond A 219:186–203

    Article  CAS  Google Scholar 

  18. Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond A 235:67–77

    Article  Google Scholar 

  19. Miyabe K, Nagai J, Guiochon G (2010) Peak parking-moment analysis: a strategy for the measurement of molecular diffusivity in liquid phase. Chem Eng Sci 65:3859–3864

    Article  CAS  Google Scholar 

  20. DePauw R, Desmet G, Broeckhoven K (2014) Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures. J Chromatogr A 1374:247–253

    Article  CAS  Google Scholar 

  21. DePauw R, Desmet G, Broeckhoven K (2013) Theoretical evaluation of the advantages and limitations of constant pressure versus constant flow rate gradient elution separation in supercritical fluid chromatography. J Chromatogr A 1312:134–142

    Article  CAS  Google Scholar 

  22. DePauw R, Desmet G, Broeckhoven K (2013) Possibilities and limitations of the kinetic plot method in SFC. J Chromatogr A 1305:300–305

    Article  CAS  Google Scholar 

  23. Leseiller R (2012) Efficiency in supercritical fluid chromatography with different superficially porous and fully porous ODS bonded phases. J Chromatogr A 1228:89–98

    Article  Google Scholar 

  24. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    Article  CAS  Google Scholar 

  25. Gritti F, Guiochon G (2013) Effect of methanol concentration on the speed-resolution properties in adiabatic supercritical fluid chromatography. J Chromatogr A 1314:255–265

    Article  CAS  Google Scholar 

  26. Grand-Guillaume Perrenoud AG-G, Hamman C, Goel M, Veuthey J-L, Guillarme D, Fekete S (2013) Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. J Chromatogr A 1314:288–297

    Article  CAS  Google Scholar 

  27. Sih R, Dehghani F, Foster NR (2007) Viscosity measurements on gas expanded liquid systems-Methanol and carbon dioxide. J Supercrit Fluids 41:148–157

    Article  CAS  Google Scholar 

  28. Vanderlinden K, Desmet G, Broeckhoven K (2020) Effect of the feed injection method on band broadening in analytical supercritical fluid chromatography. J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.461525

    Article  PubMed  Google Scholar 

  29. Blumberg LM, Berger TA (1992) Variance of a zone migrating in a non-uniform time invariant linear medium. J Chromatogr 596:1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry A. Berger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, T.A. Diffusion and Dispersion in Tubes in Supercritical Fluid Chromatography Using Sub-2 µm Packings. Chromatographia 84, 167–177 (2021). https://doi.org/10.1007/s10337-020-03996-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03996-8

Keywords

Navigation