Skip to main content
Log in

Inhibitory Binding of Angiotensin Converting Enzyme Inhibitors with Carbonic Anhydrase III

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Both angiotensin converting enzyme (ACE) and carbonic anhydrase III (CAIII) are zinc-containing enzymes. Interestingly, blocking of the both enzymes is attributed with clinically significant outcomes against hyperlipidemia and obesity. An optimized in-vitro screening approach based on HPLC–size exclusion chromatography was adopted to study the angiotensin converting enzyme inhibitors (ACEIs) affinity against CAIII enzyme. Series of concentrations of the enzyme were injected in the column with a mobile phase containing one of ACEIs in each time. The affinity of the ACEIs toward CAIII was characterized by vacancy (negative) peak whose intensity representing the fraction of the drug bound with CAIII. To explore whether the binding is within the binding site or just a promiscuous binding, exact procedure was repeated with apo-protein part of CAIII. Furthermore, an esterase activity of CAIII was performed to determine if the binding with ACEIs is excitatory or inhibitory. It has been found that ACEIs have real in-vitro inhibitory effects against CAIII at a micro-molar level. The chromatographic study revealed that the ionized carboxylate groups are essential for binding with Zn+2 ion in the enzyme active site. Among the four tested ACEIs, captopril, ramipril, enalapril, and lisinopril, captopril was found to be the most potent inhibitor with Ki = 12.1 μM, while lisinopril is the least potent one with Ki = 25.3 μM. This finding might open the door for further investigation to optimize ACEIs as lead compounds for the discovery and development of selective and potent CAIII inhibitors.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aberg G, Ferrer P (1990) J Cardiovasc Pharmacol 15:S65–S72

    Article  CAS  Google Scholar 

  2. Chobanian AV (1990) Clinical cardiology 13.

  3. Chobanian AV, Haudenschild CC, Nickerson C, Drago R (1990) Hypertension 15:327–331

    Article  CAS  Google Scholar 

  4. Kowala MC, Grove RI, Aberg G (1994) Atherosclerosis 108:61–72

    Article  CAS  Google Scholar 

  5. Powell JS, Clozel J-P, Muller RK, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Science 245:186–189

    Article  CAS  Google Scholar 

  6. Chobanian AV, Haudenschild CC, Nickerson C, Hope S (1992) Hypertension 20:473–477

    Article  CAS  Google Scholar 

  7. Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM (2008) Chem Rev 108:946–1051

    Article  CAS  Google Scholar 

  8. Chegwidden WR, Carter ND, Edwards YH (2000) The carbonic anhydrases: new horizons. Birkhäuser

  9. Supuran CT, Scozzafava A, Casini A (2003) Med Res Rev 23:146–189

    Article  CAS  Google Scholar 

  10. Al-Jaidi BA, Deb PK, Telfah ST, Dakkah AN, Bataineh YA, Khames Aga QAA, Al-Dhoun MA, Ahmad Al-Subeihi AA (2020) Odetallah HaM, Bardaweel SK. J Enzyme Inhib Med Chem 35:1483–1490

    Article  CAS  Google Scholar 

  11. Hassan MI, Shajee B, Waheed A, Ahmad F, Sly S (2013) Bioorg Med Chem 21:1570–1582

    Article  Google Scholar 

  12. Alzweiri M, Al-Balas Q, Al-Hiari Y (2015) J Enzyme Inhib Med Chem 30:420–429

    Article  CAS  Google Scholar 

  13. Supuran CT (2016) Biochem J 473:2023–2032

    Article  CAS  Google Scholar 

  14. Mitterberger MC, Kim G, Rostek U, Levine RL, Zwerschke W (2012) Exp Cell Res 318:877–886

    Article  CAS  Google Scholar 

  15. Mallis RJ, Poland BW, Chatterjee TK, Fisher RA, Darmawan S, Honzatko RB, Thomas JA (2000) FEBS Lett 482:237–241

    Article  CAS  Google Scholar 

  16. Alver A, Uçar F, Keha EE, Kalay E, Ovali E (2004) J Enzyme Inhib Med Chem 19:279–281

    Article  CAS  Google Scholar 

  17. Roy P, Reavey E, Rayne M, Roy S, Abed El Baky M, Ishii Y, Bartholomew C (2010) FEBS J 277:441-452

  18. Dai HY, Hong CC, Liang SC, Yan MD, Lai GM, Cheng AL, Chuang SE (2008) Mol Carcinog 47:956–963

    Article  CAS  Google Scholar 

  19. Ikeda M, Ishii Y, Kato H, Akazawa D, Hatsumura M, Ishida T, Matsusue K, Yamada H, Oguri K (2000) Arch Biochem Biophys 380:159–164

    Article  CAS  Google Scholar 

  20. Mohammad HK, Alzweiri MH, Khanfar MA, Al-Hiari YM (2017) Med Chem Res 26:1397–1404

    Article  CAS  Google Scholar 

  21. Jarrar N, Alzweiri M, Al-Hiari Y, Farah S, Khanfar MA (2016) Lett Drug Design Discovery 13.

  22. Alzweiri M, Al-Hiari Y (2013) Biomed Chromatogr 27:1157–1161

    Article  CAS  Google Scholar 

  23. Tamames B, Sousa SF, Tamames J, Fernandes PA, Ramos MJ (2007) Proteins 69:466–475

    Article  CAS  Google Scholar 

  24. Cini R (1999) J Biomol Struct Dyn 16:1225–1237

    Article  CAS  Google Scholar 

  25. Dick BL, Cohen SM (2018) Inorg Chem 57:9538–9543

    Article  CAS  Google Scholar 

  26. Ehlers MR, Riordan JF (1991) Biochemistry 30:7118–7126

    Article  CAS  Google Scholar 

  27. Fyhrquist F, Tikkanen I, Grönhagen-Riska C, Hortling L, Hichens M (1984) Clin Chem 30:696–700

    Article  CAS  Google Scholar 

  28. Golik A, Zaidenstein R, Dishi V, Blatt A, Cohen N, Cotter G, Berman S, Weissgarten J (1998) J Am Coll Nutr 17:75–78

    Article  CAS  Google Scholar 

  29. Kozin S, Polshakov V, Mezentsev Y, Ivanov A, Zhokhov S, Yurinskaya M, Vinokurov M, Makarov A, Mitkevich V (2018) Mol Biol 52:590–597

    Article  CAS  Google Scholar 

  30. Kozin S, Polshakov V, Mezentsev Y, Ivanov A, Zhokhov S, Yurinskaya M, Vinokurov M, Makarov A (2018) Mitkevich VJMB 52:590–597

    CAS  Google Scholar 

  31. Conroy CW, Buck RH, Maren TH (1992) Exp Eye Res 55:637–640

    Article  CAS  Google Scholar 

  32. Rengel Z (1995) J Plant Physiol 147:251–256

    Article  CAS  Google Scholar 

  33. Coleman JE (1965) Biochemistry 4:2644–2655

    Article  CAS  Google Scholar 

  34. Hunt JB, Rhee M-J, Storm CB (1977) Anal Biochem 79:614–617

    Article  CAS  Google Scholar 

  35. Berger G, Girault G (2003) J Chromatogr B 797:51–61

    Article  CAS  Google Scholar 

  36. Maren TH (1967) Physiol Rev 47:595–781

    Article  CAS  Google Scholar 

  37. Tu C, Thomas HG, Wynns GC, Silverman DN (1986) J Biol Chem 261:10100–10103

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Haneen Khaled for her teaching on NKH how to establish chromatography system.

Funding

The work was supported by the University of Jordan represented by the deanship of academic research (financial grant number: 16287).

Author information

Authors and Affiliations

Authors

Contributions

This research work is done by NKH, under the supervision of MHZ. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Noor el-huda Kh. Daoud.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, N.eh.K., Alzweiri, M. Inhibitory Binding of Angiotensin Converting Enzyme Inhibitors with Carbonic Anhydrase III. Chromatographia 83, 1517–1524 (2020). https://doi.org/10.1007/s10337-020-03973-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03973-1

Keywords

Navigation