Skip to main content
Log in

Analysis of the Stereoisomers (cis, trans) of Polyhedral Oligomeric Silsesquioxane Compounds by UHPSFC-QTof MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Polyhedral oligomeric silsesquioxanes (POSSs) are a class of important hybrid inorganic/organic materials. When POSSs are used as the building block in polymerization, the materials show superior performance over their organic counterparts in many areas due to the special Si–O cage structure. However, the stereoisomers (cis, trans) of polyhedral oligomeric silsesquioxane (POSS) show some differences in improving polymer property and it is difficult to get the pure stereoisomer by synthesis. Therefore, a method is required to separate and purify the mixture of POSSs. In this study, the isomers of POSS compounds and the impurities were separated by ultra-high performance supercritical fluid chromatography coupled quadrupole time-of-flight mass spectrometry (UHPSFC-QTof MS). To separate the isomers of POSS, the crucial parameters of UHPSFC-QTof MS were investigated. Under the optimal conditions, the isomers of product and impurities were separated in 4 min. On account of exact mass measurement, some impurities were identified. This is the first study on the analysis of isomers of POSS using UHPSFC-QTof MS. Based on this analysis method, it is helpful to optimize the conditions of synthesis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

POSSs:

Polyhedral oligomeric silsesquioxanes

QTof MS:

Quadrupole time-of-flight mass spectrometry

UHPSFC:

Ultra-high performance supercritical fluid chromatography

DDSQ:

Double-decker silsesquioxane

References

  1. Agaskar PA (1991) New synthetic route to the Hydridospherosiloxanes Oh-H8Si8O12 and D5h–H10Si10O15. Inorg Chem 22:2707–2708. https://doi.org/10.1002/chin.199138031

    Article  Google Scholar 

  2. Kawakami Y, Kakihana Y, Miyazato A, Tateyama S, Hoque MA (2010) Polyhedral Oligomeric Silsesquioxanes with controlled structure: formation and application in new si-based polymer systems. Adv Polym Sci 235:185–228. https://doi.org/10.1007/12_2010_55

    Article  CAS  Google Scholar 

  3. Wu S, Hayakawa T, Kikuchi R, Grunzinger SJ, Kakimoto M-a, Oikawa H (2007) Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules 40(16):5698–5705. https://doi.org/10.1021/ma070547z

    Article  CAS  Google Scholar 

  4. Kowalczyk A, Kowalczyk K, Gziut K (2019) Synthesis of Monoacryloxypropyl-POSS-based Hybrid Epoxyacrylate copolymers and their application in thermally curable structural self-adhesive tapes. Polymers 11(12):2058. https://doi.org/10.3390/polym11122058

    Article  CAS  PubMed Central  Google Scholar 

  5. Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187. https://doi.org/10.1016/j.progpolymsci.2015.01.003

    Article  CAS  Google Scholar 

  6. Saltan F, Akat H, Yıldırım Y (2019) Synthesis and characterization of the POSS/PCL-graphene oxide composites; the effects of gamma-radiation on its thermal properties and molecular weight. Mater Res Express 6(12):125328. https://doi.org/10.1088/2053-1591/ab59b1

    Article  Google Scholar 

  7. Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog Polym Sci 67:77–125. https://doi.org/10.1016/j.progpolymsci.2016.09.011

    Article  CAS  Google Scholar 

  8. Gonsalves KE, Merhari L, Wu H, Hu Y (2001) Organic-inorganic nanocomposites: unique resists for nanolithography. Adv Mater 13:703–714. https://doi.org/10.1002/1521-4095(200105)13:10%3c703:AID-ADMA703%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  9. Hoque MA, Kakihana Y, Shinke S, Kawakami Y (2009) Polysiloxanes with periodically distributed isomeric double-decker silsesquioxane in the main chain. Macromolecules 42:3309–3315. https://doi.org/10.1021/ma900124x

    Article  CAS  Google Scholar 

  10. Pinson DM, Yandek GR, Haddad TS, Horstman EM, Mabry JM (2013) Thermosetting Poly(imide silsesquioxane)s featuring reduced moisture affinity and improved processability. Macromolecules 46(18):7363–7377. https://doi.org/10.1021/ma401347q

    Article  CAS  Google Scholar 

  11. Schoen BW, Lira CT, Lee A (2014) Separation and solubility of cis and trans isomers in nanostructured double-decker silsequioxanes. J Chem Eng Data 59(5):1483–1493. https://doi.org/10.1021/je4010245

    Article  CAS  Google Scholar 

  12. Vogelsang DF, Maleczka RE, Lee A (2018) HPLC Characterization of cis and trans mixtures of double-decker shaped silsesquioxanes. Silicon 11(1):5–13. https://doi.org/10.1007/s12633-018-0045-4

    Article  CAS  Google Scholar 

  13. Vogelsang DF, Maleczka RE, Lee A (2018) Predictive liquid chromatography separation for mixtures of functionalized double-decker shaped silsesquioxanes based on HPLC chromatograms. Ind Eng Chem Res 58:403–410. https://doi.org/10.1021/acs.iecr.8b05490

    Article  CAS  Google Scholar 

  14. Nováková L, Sejkorová M, Smolková K, Plachká K, Švec F (2018) The benefits of ultra-high-performance supercritical fluid chromatography in determination of lipophilic vitamins in dietary supplements. Chromatographia 82:477–487. https://doi.org/10.1007/s10337-018-3666-2

    Article  CAS  Google Scholar 

  15. Li B, Wei G, Chi H, Kimura M, Ramsey ED (2017) Monitoring the progress of a photochemical reaction performed in supercritical fluid carbon dioxide using a continuously stirred reaction cell interfaced to on-line SFC. Chromatographia 80(8):1179–1188. https://doi.org/10.1007/s10337-017-3334-y

    Article  CAS  Google Scholar 

  16. Yan T, Shuqi S, Linyu Z, Zhenxia D, Jingcong Z, Jinheng P (2018) Determination of 16 polycyclic aromatic hydrocarbons in tire rubber by ultra-high performance supercritical fluid chromatography combined with atmospheric pressure photoionization-tandem mass spectrometry. Anal Methods 10:4902–4908. https://doi.org/10.1039/C8AY01580E

    Article  Google Scholar 

  17. Noireau A, Lemasson E, Mauge F, Petit AM, Bertin S, Hennig P, Lesellier E, West C (2019) Purification of drug degradation products supported by analytical and preparative supercritical fluid chromatography. J Pharm Biomed Anal 170:40–47. https://doi.org/10.1016/j.jpba.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  18. Vicente G, García-Risco MR, Fornari T, Reglero G (2013) Isolation of carsonic acid from rosemary extracts using semi-preparative supercritical fluid chromatography. J Chromatogr A 1286:208–215. https://doi.org/10.1016/j.chroma.2013.02.044

    Article  CAS  PubMed  Google Scholar 

  19. Anderson SE, Somogyi A, Haddad TS, Coughlin EB, Gadodia G, Marten DF, Ray J, Bowers MT (2010) ESI and MALDI mass spectrometry of large POSS oligomers. Int J Mass Spectrom 292:38–47. https://doi.org/10.1016/j.ijms.2010.02.013

    Article  CAS  Google Scholar 

  20. De Winter J, Goffin A-L, Coulembier O, Dubois P, Flammang R, Gerbaux P (2009) Letter: Metastable processes investigated on an orthogonal-axis time-of-flight instrument: mass-scale calibration and application. Eur J Mass Spectrom 15:431. https://doi.org/10.1255/ejms.973

    Article  CAS  Google Scholar 

  21. Bakhtiar R, Feher FJ (1999) Mass spectrometric characterization of polyhedral oligosilsesquioxanes and heterosilsesquioxanes Rapid Commun. Mass Spectrom 13:687–694. https://doi.org/10.1002/(SICI)1097-0231(19990430)13:83.0.CO;2-N

    Article  CAS  Google Scholar 

  22. Lesellier E, West C (2015) The many faces of packed column supercritical fluid chromatography – A critical review. J Chromatogr A 1382:2–46. https://doi.org/10.1016/j.chroma.2014.12.083

    Article  CAS  Google Scholar 

  23. Zhang Y, Xiao Z, Lv S, Du Z, Liu X (2016) Simultaneous determination of 16 polycyclic aromatic hydrocarbons in reclaimed water using solid-phase extraction followed by ultra-performance convergence chromatography with photodiode array detection. J Sep Sci 39:993–999. https://doi.org/10.1002/jssc.201500823

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Sun S, Xing X, Du Z, Guo Q, Yu W (2016) Detection and identification of leachables in vaccine from plastic packaging materials using UPLC-QTOF MS with self-built polymer additives library. Anal Chem 88:6749–6757. https://doi.org/10.1021/acs.analchem.6b01027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21874006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxia Du.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Du, Z., Zhang, Y. et al. Analysis of the Stereoisomers (cis, trans) of Polyhedral Oligomeric Silsesquioxane Compounds by UHPSFC-QTof MS. Chromatographia 83, 341–347 (2020). https://doi.org/10.1007/s10337-020-03859-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03859-2

Keywords

Navigation