Skip to main content
Log in

Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method for Multiresidue Determination of 25 Herbicides in Soil and Tobacco

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In the cultivation of tobacco, crop rotation patterns, such as tobacco/rice or tobacco/corn, are widely used. However, the use of herbicides in the rice or corn phase can lead to their being taken in during the tobacco phase by inner conduction action. In the present study, to monitor the use of herbicides in tobacco, a sensitive and simple analytical method coupled with liquid chromatography-tandem mass spectrometry (LC–MS/MS) has been established for determination of 25 herbicides in soil as well as fresh and flue-cured tobacco leaf. The herbicides analyzed include six aryloxy phenoxy propionate herbicides (APPs) and 19 sulfonylureas herbicides (SUs). The samples were extracted using acetonitrile and purified using C18 sorbent before analysis. Optimum separation of the analytes was achieved using an Agilent Eclipse XDB-C18 column at 40 °C and gradient elution with acetonitrile and 0.1% aqueous formic acid as the mobile phase at a flow rate of 0.8 mL min−1. The limits of quantification and detection are in the ranges 0.08–1.00 mg kg−1 and 0.024–0.30 mg kg−1, respectively, and matrix effects in the range − 70 to 50% were achieved. The recovery rates obtained from spiked soil and tobacco leaf samples ranged from 72.32 to 116.83% with intra-day and inter-day relative standard deviations of 0.44–11.55%. In addition, the method developed was applied to the determination of herbicides residues in actual soil and tobacco samples, revealing that the proposed method can detect trace amounts of APPs and SUs in soil as well as in fresh and flue-cured tobacco leaf.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang XG, Xu GJ, Wang FL, Sun HQ, Li YQ (2012) Bull Environ Contam Toxicol 89:877–881

    CAS  PubMed  Google Scholar 

  2. Wang F, Yang GQ, Xu J, Yu WW, Shi LH, Zeng S, Chen LZ, Hu DY, Zhang KK (2018) Biomed Chromatogr 32:e4148

    Google Scholar 

  3. FAO (Food and Agriculture Organization of the United Nations) Crop Statistics (2017). http://www.fao.org/faostat/zh/#data. Accessed 05 March 2019

  4. Farajzadeh MA, Mohebbi A, Feriduni B (2016) Anal Chim Acta 920:1–9

    CAS  PubMed  Google Scholar 

  5. Ni YX, Yang H, Zhang HT, He Q, Huang SQ, Qin ML, Chai SS, Cao HH, Ma YN (2018) J Chromatogr A 1537:27–34

    CAS  PubMed  Google Scholar 

  6. Lucini L, Molinari GP (2011) Qual Assur Saf Crops Foods 3:63–68

    CAS  Google Scholar 

  7. Gronwald JW (2015) Biochem Soc Trans 22:616–621

    Google Scholar 

  8. Hu JY, Deng ZB, Liu C, Zheng ZX (2010) Chromatographia 72:701–706

    CAS  Google Scholar 

  9. Farajzadeh MA, Yadeghari A, Khoshmaram L (2017) Microchem J 131:182–191

    CAS  Google Scholar 

  10. Seccia S, Albrizio S, Fidente P, Montesano D (2011) J Chromatogr A 1218:1253–1259

    CAS  PubMed  Google Scholar 

  11. Seebunrueng K, Santaladchaiyakit Y, Srijaranai S (2013) Anal Methods 5:6009–6016

    CAS  Google Scholar 

  12. Gure A, Lara FJ, Moreno-González D, Megersa N, Del Olmo-Iruela M, García-Campaña AM (2014) Talanta 127:51–58

    CAS  PubMed  Google Scholar 

  13. Ghobadi M, Yamini Y, Ebrahimpour B (2015) Ecotoxicol Environ Saf 112:68–73

    CAS  PubMed  Google Scholar 

  14. Rejczak T, Tuzimski T (2016) J Chromatogr A 147:56–65

    Google Scholar 

  15. Mehdizadeh M, Alebrahim MT, Roushani M (2017) Bull Environ Contam Toxicol 99:93–99

    CAS  PubMed  Google Scholar 

  16. Fenoll J, Hellín P, Sabater P, Flores P, Navarro S (2012) Talanta 101:273–282

    CAS  PubMed  Google Scholar 

  17. Lee YJ, Rahman MM, Abd El-Aty AM, Choi JH, Chun HS, Kim SW, Abdel-Aty AM, Shin HC, Shim JH (2016) Food Chem 210:442–450

    CAS  PubMed  Google Scholar 

  18. Kaczyński P, Łozowicka B (2017) Food Anal Methods 10:147–160

    Google Scholar 

  19. Chen XX, Yu S, Han LJ, Sun SJ, Zhi YA, Li WM (2011) Bull Environ Contam Toxicol 87:50–53

    CAS  PubMed  Google Scholar 

  20. Wu YB, Liu XG, Dong FS, Xu J, Zheng YQ (2012) Bull Environ Contam Toxicol 89:1264–1267

    CAS  PubMed  Google Scholar 

  21. Yan CM, Zhang BB, Liu WY, Feng F, Zhao YG, Du H (2011) J Chromatogr B 879:3484–3489

    CAS  Google Scholar 

  22. Sheng JC, Xu ZX, Cai JB, Shao XG (2006) Anal Sci 22:241–244

    Google Scholar 

  23. Li Y, Zhu J, Ren L, Li YX, Zou XL (2016) J Braz Chem Soc 27:1792–1799

    CAS  Google Scholar 

  24. Liu HX, Ding CH, Zhang SS, Liu HM, Liao XC, Qu LB, Zhao YF, Wu YJ (2004) J Agric Food Chem 52:6912–6915

    CAS  PubMed  Google Scholar 

  25. Luo YB, Li X, Jiang XY, Cai BD, Zhu FP, Zhang HF, Chen ZG, Pang YQ, Feng YQ (2015) J Chromatogr A 1406:1–9

    CAS  PubMed  Google Scholar 

  26. Anastassiade M, Lehotay SJ (2003) J AOAC Int 86:412–431

    Google Scholar 

  27. Fernanda RBK, Márcia CB, Isabel CSFJ (2017) J Chromatogr A 1482:11–22

    Google Scholar 

  28. Agricultural Industry Standards of the People’s Republic of China (NY/T 1121) Guidance document on soil testing. http://down.foodmate.net/standard/search.php?corpstandard=2&fields=0&kw=NY%2FT+1121. Accessed 12 March 2019

  29. Liu GS, Liu JL (2010) Practical guide to leaf tobacco production techniques in China. China National Leaf Tobacco Corporation, Beijing

    Google Scholar 

  30. Zhang QT, Yang Y, Liu XW, Chen Y, Hu DY, Lu P (2019) Anal Lett 52:948–961s

    CAS  Google Scholar 

  31. Han YT, Zou N, Song L, Li YJ, Qin YH, Liu SW, Li XS, Pan CP (2015) J Chromatogr B 1005:56–64

    CAS  Google Scholar 

  32. de Gimenes Souza C, de Torres Araújo M, Cavalcante dos Santos R, de França Andrade D, da Vasconcello Silva B, Antonio d’Avila L (2018) Energy Fuels 32:11547–11554

    Google Scholar 

  33. Kim NS, Kim KY, Yoo GJ, Lee JH, Park HN, Park SK, Baek SY (2018) Food Addit Contam Part A 35:387–394

    CAS  Google Scholar 

  34. Arrebola FJ, Cortes Aguado S, Sánchez-Morito N, Garrido Frenich A, Martínez Vidal JL (2004) Anal Lett 37:99–117

    CAS  Google Scholar 

  35. Rutkowska E, Łozowicka B, Kaczyński P (2019) Food Chem 279:20–29

    CAS  PubMed  Google Scholar 

  36. Yang F, Bian ZY, Chen XS, Liu SS, Liu Y, Tang GL (2014) J Chromatogr Sci 52:788–792

    CAS  PubMed  Google Scholar 

  37. Zhou X, Cao SR, Li XL, Tang BB, Ding XW, Xi CX, Hu JT, Chen ZQ (2015) J Chromatogr B 989:21–26

    CAS  Google Scholar 

  38. Zhou X, Cao SR, Li XL, Xi CX, Ding XW, Xu F, Hu JT, Chen ZQ (2016) J Chromatogr Sci 54:858–863

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dorival-García N, Junza A, Zafra-Gómez A, Barrónb D, Navalóna A (2016) Food Control 60:382–393

    Google Scholar 

  40. Qin YH, Zhao PY, Fan SF, Han YT, Li YJ, Zou N, Song SY, Zhang Y, Li FB, Li XS, Pan CP (2015) J Chromatogr A 1385:1–11

    CAS  PubMed  Google Scholar 

  41. Tian CY, Xu J, Dong FS, Liu XG, Wu XH, Zhao HH, Ju C, Wei DM, Zheng YQ (2016) J Agric Food Chem 64:2641–2646

    CAS  PubMed  Google Scholar 

  42. Zhao HH, Xu J, Dong FS, Liu XG, Wu YB, Zhang JG, Zheng YQ (2014) Anal Methods 6:4336–4342

    CAS  Google Scholar 

  43. Tripathy V, Sharma KK, Yadav R, Devi S, Tayade A, Sharma K, Pandey P, Singh G, Patel AN, Gautam R, Gupta R, Kalra S, Shukla P, Walia S, Shakil NA (2019) J Environ Sci Health, Part B 54:394–406

    CAS  Google Scholar 

  44. Colazzo M, Pareja L, Cesio MV, Heinzen H (2018) Int J Environ Anal Chem 98:1292–1308

    CAS  Google Scholar 

  45. Cao YL, Tang H, Chen DZ, Li L (2015) J Chromatogr B 998–999:72–79

    Google Scholar 

  46. National Food Administration (2018) Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed (SANTE/11813/2017). https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf, 2017. Accessed 15 March 2019

Download references

Funding

This study was funded by the National Key Research and Development Program of China (Grant number 2016YFD0201305) and the Science and Technology Programs of Guizhou Province (Grant number [2019]2347).

Author information

Authors and Affiliations

Authors

Contributions

The formulation of overarching research goals and aims were performed by [DH] and [PL]. Development of methodology was conducted by [YC] and [YY]. Material preparation, provision data collection and analysis were performed by [YC], [YY], [XL] and [YY]. The first draft of the manuscript was written by [YC] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ping Lu or Deyu Hu.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, Y., Liu, X. et al. Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method for Multiresidue Determination of 25 Herbicides in Soil and Tobacco. Chromatographia 83, 229–239 (2020). https://doi.org/10.1007/s10337-019-03834-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03834-6

Keywords

Navigation