Skip to main content
Log in

Kinetic Degradation Study of Dapagliflozin Coupled with UHPLC Separation in the Presence of Major Degradation Product and Metformin

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel ultra-performance liquid chromatography with UV detector technique was established for simultaneous determination of two antidiabetic drugs, dapagliflozin (DAPA) and metformin (MET), followed by a stress degradation study. Main degradation product was chromatographically separated and precisely characterized via LC-MS/MS. Chromatographic separation done on a Symmetry® Acclaim™ RSLC 120 C18 column (100 mm, 2.1 mm, 2.2 µm), column temperature was maintained at 60 °C. Mobile phase was a mixture of potassium dihydrogen phosphate buffer, pH (3.5)—acetonitrile (50:50, v/v) at flow rate of 0.4 mL/min. The method has displayed an adequate detection at concentration ranges of 1–50 µg/mL for dapagliflozin propanediol monohydrate and 0.5–100 µg/mL for metformin hydrochloride. DAPA was then exposed to different stress conditions include alkaline, acidic, oxidative and ultraviolet light. A study of the degradation kinetics in alkaline medium for DAPA has proved that the degradation follows a pseudo-first-order reaction. The proposed method was effectively applied for the analysis of laboratory prepared mixtures as well as a combined pharmaceutical formulation with 1:200 ratio of DAPA: MET. No significant difference was found regarding accuracy and precision upon statistical comparison between the obtained results and those of the reported method. Validation was conducted in compliance with the ICH guidelines proving that method is selective, linear, precise and accurate. The simplicity and sensitivity of this method allows its use in the quality control tests of the two cited drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Rojas L, Gomes M (2013) Diabetol Metab Syndr 5:1–15

    Article  CAS  Google Scholar 

  2. Ahmed M (2010) Int J Diabetes Mellitus 2:125–126

    Article  Google Scholar 

  3. Jani B, Shah K, Kapupara P (2015) Int J Res Dev Pharm L Sci 4:1569–1576

    CAS  Google Scholar 

  4. Jani B, Shah V, Kapupara P (2015) J Bioequivalence Stud 1:1–7

    Google Scholar 

  5. Yunoos M, Sankar G (2015) Asian J Pharm Clin Res 8:320–326

    CAS  Google Scholar 

  6. Shyamala B, Nidhi M, Kavitha, Pooja, Sharma J (2015) Am J Biol Pharm Res 2:109–113

    Google Scholar 

  7. Deepan T (2017) Eur J Appl Sci 9:189–199

    CAS  Google Scholar 

  8. Chitra K, Eswaraiah C, Rao M (2015) J Chem Pharm Res 7:45–49

    CAS  Google Scholar 

  9. Sanagapati M, Dhanalakshmi K, Reddy G, Sreenivasa S (2014) J Adv Pharm Educ Res 4:350–353

    CAS  Google Scholar 

  10. Manasa S, Dhanalakshmi K, Reddy G, Kavitha B (2014) Int J Pharm Sci Rev Res 27:270–272

    Google Scholar 

  11. Manasa S, Dhanalakshmi K, Nagarjunareddy G, Sreenivasa S (2014) IJPSR 5:5394–5397

    Google Scholar 

  12. Sanagapati M, Dhanalakshmi K, Reddy G, Sreenivasa S (2014) Int J Pharm Sci Drug Res 6:250–252

    Google Scholar 

  13. Aubry H, Gu R, Magnier L, Morgan X, Xu M, Tirmenstein B, Wang Y, Deng J, Cai P, Couerbe, Arnold M (2010) Bioanalysis 2:2001–2009

    Article  CAS  PubMed  Google Scholar 

  14. Bhushan R, Gupta D, Jain A (2006) J Planar Chromatogr Mod TLC 19:288–296

    Article  CAS  Google Scholar 

  15. Sengupta P, Bhaumik U, Ghosh A, Sarkar A, Chromatographia, 2009, 69, 1243–1250

  16. Elbagary R, Elkady E, Ayoub B (2011) Int J Biomed Sci 7:201–208

    CAS  Google Scholar 

  17. Wang M, Miksa I (2007) J Chromatogr B: Biomed Sci Appl 856:318–327

    Article  CAS  Google Scholar 

  18. Georgita C, Albu F, David V, Medvedovici A (2007) J Chromatogr B 854:211–218

    Article  CAS  Google Scholar 

  19. Ali M, Rafiuddin S, Ghori M, Khatri A, Chromatographia, 2008, 67, 517–525

  20. Lai E, Feng S (2006) J Chromatogr B 843:94–99

    Article  CAS  Google Scholar 

  21. Elbagary R, Elkady E, Ayoub B, Talanta, 2011, 85, 673–680

  22. Zhang L, Tian Y, Zhang Z, Chen Y (2007) J Chromatogr B 854:91–98

    Article  CAS  Google Scholar 

  23. Ali H, Duraidi I, Saket M, Abu-Nameh E (2009) J AOAC Int 92:119–124

    CAS  PubMed  Google Scholar 

  24. Elbagary R, Elkady E, Ayoub B (2013) Eur J Chem 4:360–365

    Article  CAS  Google Scholar 

  25. Ghassempour M, Ahmadi S, Ebrahimi, Aboul-Enein H, Chromatographia, 2006, 64, 101–104

  26. Elbagary R, Elkady E, Ayoub B (2011) Int J Biomed Sci 7:62–69

    CAS  Google Scholar 

  27. Tahara K, Yonemoto A, Yoshiyama Y, Nakamura T, Aizawa M, Fujita Y, Nishikawa T (2006) Biomed Chromatogr 20:1200–1205

    Article  CAS  PubMed  Google Scholar 

  28. Pawar S, Meshram G, Phadke M, Chromatographia, 2008, 68, 1063–1066

  29. Elbagary R, Elkady E, Ayoub B (2013) Eur J Chem 4:444–449

    Article  CAS  Google Scholar 

  30. Mowaka S,., Ayoub B, Pharmazie, 2017, 72, 67–72

    CAS  PubMed  Google Scholar 

  31. Mowaka S, Elkady E, Elmazar M, Ayoub B, Microchem J, 2017, 130, 360–365

  32. Ayoub B, Abdel-Aziz O, Pharmazie, 2016, 71, 683–690

    CAS  PubMed  Google Scholar 

  33. Ayoub B (2015) RSC Adv 5:95703–95709

    Article  CAS  Google Scholar 

  34. Mowaka S, Mohamed D (2015) RSC Adv 5:60467–60481

    Article  CAS  Google Scholar 

  35. Miller JN, Miller JC, Statistics and chemometrics for analytical chemistry, 5th edn, Pearson Education Limited, Harlow, 2005

    Google Scholar 

  36. ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, Q2 (R1), Current step 4 version, Parent guidelines on Methodology, 1996, incorporated in November 2005

  37. ICH Harmonised Tripartite Guidelines, Q1A (R2) Stability Testing of New Drug Substances and Products, 2003

Download references

Funding

This study was self-funded, no fund is received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moataz S. Hendy.

Ethics declarations

Conflict of interest

No conflict of interest of any kind.

Research involving human or animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghary, W.A., Mowaka, S. & Hendy, M.S. Kinetic Degradation Study of Dapagliflozin Coupled with UHPLC Separation in the Presence of Major Degradation Product and Metformin. Chromatographia 82, 777–789 (2019). https://doi.org/10.1007/s10337-019-03702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03702-3

Keywords

Navigation