Skip to main content

Advertisement

Log in

Rapid Ultrasound-Assisted Emulsification Microextraction Combined with COU-2 Dispersive Micro-solid Phase Extraction for the Determination of Azole Antifungals in Milk Samples by HPLC-DAD

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A rapid, simple, and efficient method using ultrasound-assisted emulsification microextraction combined with dispersive micro-solid phase extraction (USAE-D-µ-SPE) was developed for detection and quantification of three azole antifungals in milk samples by high-performance liquid chromatography diode array detector. In this study, mesoporous carbon, COU-2, was used as sorbent in USAE-D-µ-SPE for the extraction and preconcentration of analytes. Several important experimental parameters, including type of deproteinized solvents, desorption time, type of extraction solvents, volume of extraction solvent, extraction time, emulsification time, sample pH, salt addition, and mass of COU-2 sorbent, were optimized using spiked milk samples. Under the optimum extraction and detection conditions, three azole antifungals, namely ketoconazole, clotrimazole, and miconazole, were determined within 20 min, with good linearity of matrix-matched calibration in the range of 0.5–5000.0 µg L−1 with coefficient of determination, r 2 ≥ 0.9943. The method showed limits of detection and limits of quantification of all analytes in the range of 0.15–3.0 and 0.5–10.0 µg L−1, respectively. Good repeatability with RSDs <15% (n = 3) and satisfactory relative recoveries (83.3–111.1%) were obtained for spiked azole antifungal drugs in milk. The results reveal that the developed USAE-D-µ-SPE method was a simple, rapid, efficient, environmentally friendly, and practicable method for the determination of azole antifungals in milk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bossche HV, Engelen M, Rochette F (2003) Antifungal agents of use in animal health—chemical, biochemical and pharmacological aspects. J Vet Pharmacol Ther 26:5–29. doi:10.1046/j.1365-2885.2003.00456.x

    Article  Google Scholar 

  2. Beigi FAK, Imani M, Payehghadrb M, Hosseinic H (2011) SPE-HPLC method for determination of ketoconazole and clotrimazole residues in cow’s milk. J Braz Chem Soc 22:1679–1685

    Article  CAS  Google Scholar 

  3. National Research Council, Board on Agriculture, Panel on Animal Health, Food Safety, and Public Health C on DU in F (1999) National Research Council Committee on drug use in food A the use of drugs in food animals: benefits and risks. National Academies Press, Washington

    Google Scholar 

  4. Adlnasab L, Ebrahimzadeh H, Yamini Y, Mirzajani F (2010) Optimization of a novel method based on solidification of floating organic droplet by high-performance liquid chromatography for evaluation of antifungal drugs in biological samples. Talanta 83:370–378. doi:10.1016/j.talanta.2010.09.031

    Article  CAS  Google Scholar 

  5. Gannnoum MARL (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    Google Scholar 

  6. Garcı LA, Stricker BHC (1999) A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br J Clin Pharmacol 48:847–852

    Google Scholar 

  7. Coulthard K, Martin KMN (1987) Convulsions after miconazole overdose. Med J Aust 146:57–58

    CAS  Google Scholar 

  8. Bahadoran P, Fatemeh KRFF (2010) Investigating the therapeutic effect of vaginal cream containing garlic and thyme compared to clotrimazole cream for the treatment of mycotic vaginitis. Iran J Nurs Midwifery Res 15:343–349

    Google Scholar 

  9. Wang J, Jia L, Kuang Z, Wu T, Hong Y, Chen X, Leung WK, Xian JCB (2014) The in vitro and in vivo antitumor effects of clotrimazole on oral squamous cell carcinoma. PLoS One. doi:10.1371/journal.pone.0098885

    Google Scholar 

  10. Gaona-Galdos AA, Filho LAZ, Tavares MFM et al (2008) Development and validation of a method for quantitative determination of econazole nitrate in cream formulation by capillary zone electrophoresis. J Chromatogr A 1192:301–305. doi:10.1016/j.chroma.2008.03.070

    Article  CAS  Google Scholar 

  11. Nguyen Minh Nguyet A, Tallieu L, Plaizier-Vercammen J et al (2003) Validation of an HPLC method on short columns to assay ketoconazole and formaldehyde in shampoo. J Pharm Biomed Anal 32:1–19. doi:10.1016/S0731-7085(02)00640-4

    Article  CAS  Google Scholar 

  12. Ekiert RJ, Krzek J, Czekaj JSHU (2009) Evaluation of a CGC-FID method for qualitative and quantitative analysis of azole antifungal drugs. Acta Chromatogr 21:273–280

    Article  CAS  Google Scholar 

  13. Khashaba PY, El-Shabouri SR, Emara KM, Mohamed AM (2000) Analysis of some antifungal drugs by spectrophotometric and spectrofluorimetric methods in different pharmaceutical dosage forms. J Pharm Biomed Anal 22:363–376. doi:10.1016/S0731-7085(99)00280-0

    Article  CAS  Google Scholar 

  14. El-shabouri SR, Emara KM, Khashaba Y, Mohamed AM (1998) Charge-transfer complexation for spectrophotometric assay of certain imidazole antifungal drugs. Anal Lett 31:37–41. doi:10.1080/00032719808002873

    Article  Google Scholar 

  15. Aerts MML, Hogenboom AC, Brinkman UAT (1995) Analytical strategies for the screening of veterinary drugs and their residues in edible products. J Chromatogr B Biomed Sci Appl 667:1–40. doi:10.1016/0378-4347(95)00021-A

    Article  CAS  Google Scholar 

  16. Langman LJ, Boakye-Agyeman F (2007) Measurement of voriconazole in serum and plasma. Clin Biochem 40:1378–1385. doi:10.1016/j.clinbiochem.2007.07.024

    Article  CAS  Google Scholar 

  17. Di Pietra AM, Cavrini V, Andrisano V, Gatti R (1992) HPLC analysis of imidazole antimycotic drugs in pharmaceutical formulations. J Pharm Biomed Anal 10:873–879. doi:10.1016/0731-7085(91)80094-P

    Article  Google Scholar 

  18. Gordien J-B, Pigneux A, Vigouroux S et al (2009) Simultaneous determination of five systemic azoles in plasma by high-performance liquid chromatography with ultraviolet detection. J Pharm Biomed Anal 50:932–938. doi:10.1016/j.jpba.2009.06.030

    Article  CAS  Google Scholar 

  19. Lin SC, Lin SW, Chen JMKC (2010) Using sweeping-micellar electrokinetic chromatography to determine voriconazole in patient plasma. Talanta 82:653–659

    Article  CAS  Google Scholar 

  20. Ge D, Lee HK (2012) Sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction using mixed zeolitic imidazolate frameworks 8 as sorbent. J Chromatogr A 1263:1–6. doi:10.1016/j.chroma.2012.09.016

    Article  CAS  Google Scholar 

  21. Moradi M, Yamini Y, Vatanara A et al (2010) Monitoring of trace amounts of some anti-fungal drugs in biological fluids by hollow fiber based liquid phase microextraction followed by high performance liquid chromatography. Anal Methods 2:387–392. doi:10.1039/b9ay00226j

    Article  CAS  Google Scholar 

  22. Ebrahimpour B, Yamini YEA (2011) Extraction of azole antifungal drugs from milk and biological fluids using a new hollow fiber liquid-phase microextraction and analysis by GC-FID. Chromatographia 74:281–289

    Article  CAS  Google Scholar 

  23. Xia Y, Zhi X, Wang X, Chen M (2012) Ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction and high-performance liquid chromatography for determination of ketoconazole and econazole nitrate in human blood. Anal Bioanal Chem 402:1241–1247. doi:10.1007/s00216-011-5508-z

    Article  CAS  Google Scholar 

  24. Saleh A, Yamini Y, Faraji M et al (2009) Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1216:6673–6679. doi:10.1016/j.chroma.2009.08.001

    Article  CAS  Google Scholar 

  25. Ozcan S, Tor A, Aydin ME (2010) Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography-mass spectrometry. Anal Chim Acta 665:193–199. doi:10.1016/j.aca.2010.03.047

    Article  CAS  Google Scholar 

  26. Liao QG, Li WH, Luo LG (2013) Ultrasound-assisted emulsification-microextraction for the sensitive determination of ethyl carbamate in alcoholic beverages. Anal Bioanal Chem 405:6791–6797. doi:10.1007/s00216-013-7110-z

    Article  CAS  Google Scholar 

  27. Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M (2016) Evaluation of the contamination of spirits by polycyclic aromatic hydrocarbons using ultrasound-assisted emulsification microextraction coupled to gas chromatography-mass spectrometry. Food Chem 190:324–330. doi:10.1016/j.foodchem.2015.05.106

    Article  CAS  Google Scholar 

  28. Szreniawa-sztajnert A, Namies J (2013) Developments in ultrasound-assisted microextraction techniques for isolation and preconcentration of organic analytes from aqueous samples. Trends Anal Chem 49:45–54. doi:10.1016/j.trac.2013.02.015

    Article  CAS  Google Scholar 

  29. Fu SC, Tzing SH, Chen HC et al (2012) Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples. Anal Bioanal Chem 402:2209–2216. doi:10.1007/s00216-011-5681-0

    Article  CAS  Google Scholar 

  30. Galán-Cano F, Lucena R, Cárdenas S, Valcárcel M (2011) Direct coupling of dispersive micro-solid phase extraction and thermal desorption for sensitive gas chromatographic analysis. Anal Methods 3:991. doi:10.1039/c1ay05033h

    Article  Google Scholar 

  31. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction. Anal Chim Acta 714:76–81. doi:10.1016/j.aca.2011.11.055

    Article  Google Scholar 

  32. Chung WH, Tzing SH, Ding WH (2013) Dispersive micro solid-phase extraction for the rapid analysis of synthetic polycyclic musks using thermal desorption gas chromatography-mass spectrometry. J Chromatogr A 1307:34–40. doi:10.1016/j.chroma.2013.07.074

    Article  CAS  Google Scholar 

  33. Jin J, Nishiyama N, Egashira Y, Ueyama K (2009) Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers. Microporous Mesoporous Mater 118:218–223. doi:10.1016/j.micromeso.2008.08.030

    Article  CAS  Google Scholar 

  34. Jung HH, Park K, Han DK (2010) Preparation of TGF-β1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells. J Control Release 147:84–91. doi:10.1016/j.jconrel.2010.06.020

    Article  CAS  Google Scholar 

  35. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717. doi:10.1002/anie.200702046

    Article  CAS  Google Scholar 

  36. Becerril-Bravo E, Pablo Lamas J, Sanchez-Prado L et al (2010) Ultrasound-assisted emulsification-microextraction of fragrance allergens in water. Chemosphere 81:1378–1385. doi:10.1016/j.chemosphere.2010.09.028

    Article  CAS  Google Scholar 

  37. Leong MI, Chang CC, Fuh MR, Da Huang S (2010) Low toxic dispersive liquid-liquid microextraction using halosolvents for extraction of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1217:5455–5461. doi:10.1016/j.chroma.2010.06.056

    Article  CAS  Google Scholar 

  38. See HH, Marsin Sanagi M, Ibrahim WAW, Naim AA (2010) Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. J Chromatogr A 1217:1767–1772. doi:10.1016/j.chroma.2010.01.053

    Article  CAS  Google Scholar 

  39. Polo M, Gómez-Noya G, Quintana JB et al (2004) Development of a solid-phase microextraction gas chromatography/tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples. Anal Chem 76:1054–1062. doi:10.1021/ac030292x

    Article  CAS  Google Scholar 

  40. Dahane S, García MDG, Bueno MJM et al (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography—quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. doi:10.1016/j.chroma.2013.05.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Universiti Sains Malaysia for facilitations and the Ministry of Education Malaysia for their financial supports through research votes (Short Term Grant 304.CIPPT.6313197 and Fundamental Research Grant Scheme- 203.CIPPT.6711484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorfatimah Yahaya.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, N., Lim, V., Ramachandran, M.R. et al. Rapid Ultrasound-Assisted Emulsification Microextraction Combined with COU-2 Dispersive Micro-solid Phase Extraction for the Determination of Azole Antifungals in Milk Samples by HPLC-DAD. Chromatographia 80, 1553–1562 (2017). https://doi.org/10.1007/s10337-017-3386-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3386-z

Keywords

Navigation