Skip to main content
Log in

Micellar Solution as Green Extractive Solvent for Determination of Content of Quercetin as Natural Antioxidant in Oil Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

We used water-contained surfactant-based vortex-assisted microextraction (WSVAME) as a green extraction method followed by high-performance liquid chromatography (HPLC) to determine the content of quercetin as natural antioxidant in different oil samples. During the WSVAME procedure, micellar solution of cationic surfactant cetyltrimethylammonium bromide (CTAB) was injected into oil samples in a conical-bottom glass tube to form cloudy solution. The dispersion process was accelerated by vortex mixing. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. Optimization of extraction factors such as the volume and concentration of extraction solvent (aqueous solution of CTAB), percentage of acetic acid added to the oil sample, and vortex time was carried out using the chemometrics approach. Under the optimum condition (30 μL of 0.15 mol L−1 CTAB solution and vortex time of 1 min) the calibration curve was linear in the range of 0.1–100.0 μg mL−1 for hazelnut, olive, and coconut oil and 0.1–120.0 μg mL−1 for almond and grapeseed oil, with correlation coefficient (R 2) greater than 0.996. The limits of detection were 0.01–0.06 μg mL−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299

    Article  CAS  Google Scholar 

  2. Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  Google Scholar 

  3. Shetty A, Rashmi R, Rajan M, Sambaiah K, Salimath P (2004) Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutr Res 24:373–381

    Article  CAS  Google Scholar 

  4. Cheong H, Ryu S-Y, Oak M-H, Cheon S-H, Yoo G-S, Kim K-M (1998) Studies of structure activity relationship of flavonoids for the anti-allergic actions. Arch Pharm Res 21:478–480

    Article  CAS  Google Scholar 

  5. Benavente-García O, Castillo J, Marin FR, Ortuño A, Del Río JA (1997) Uses and properties of citrus flavonoids. J Agric Food Chem 45:4505–4515

    Article  Google Scholar 

  6. Benavente-Garcia O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    Article  CAS  Google Scholar 

  7. de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Udo AT (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63

    Article  Google Scholar 

  8. Hu J, Calomme M, Lasure A, De Bruyne T, Pieters L, Vlietinck A, Berghe DV (1995) Structure-activity relationship of flavonoids with superoxide scavenging activity. Biol Trace Elem Res 47:327–331

    Article  CAS  Google Scholar 

  9. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325

    Article  CAS  Google Scholar 

  10. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386

    Article  CAS  Google Scholar 

  11. Hertog MG, Feskens EJ, Kromhout D, Hollman P, Katan M (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011

    Article  CAS  Google Scholar 

  12. De La Lastra CA, Martin MJ, Motilva V (1994) Antiulcer and gastroprotective effects of quercetin: a gross and histologic study. Pharmacology 48:56–62

    Article  Google Scholar 

  13. Chaudhry PS, Cabrera J, Juliani HR, Varma SD (1983) Inhibition of human lens aldose reductase by flavonoids, sulindac and indomethacin. Biochem Pharmacol 32:1995–1998

    Article  CAS  Google Scholar 

  14. Park H-H, Lee S, Son H-Y, Park S-B, Kim M-S, Choi E-J, Singh TS, Ha J-H, Lee M-G, Kim J-E (2008) Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharmacal Res 31:1303–1311

    Article  CAS  Google Scholar 

  15. Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104

    Article  CAS  Google Scholar 

  16. Sung M-T, Chen Y-C, Chi C-W (2014) Chapter 22—Quercetin’s potential to prevent and inhibit oxidative stress-induced liver cancer. In: Preedy V (ed) Cancer. Academic, San Diego, pp 231–239

    Chapter  Google Scholar 

  17. Steinmetz KA, Potter JD (1996) Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96:1027–1039

    Article  CAS  Google Scholar 

  18. Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  CAS  Google Scholar 

  19. Roedig-Penman A, Gordon MH (1998) Antioxidant properties of myricetin and quercetin in oil and emulsions. J Am Oil Chem Soc 75:169–180

    Article  CAS  Google Scholar 

  20. Watson D, Oliveira E (1999) Solid-phase extraction and gas chromatography–mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets. J Chromatogr B Biomed Sci Appl 723:203–210

    Article  CAS  Google Scholar 

  21. Canini A, Alesiani D, D’Arcangelo G, Tagliatesta P (2007) Gas chromatography–mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Compost Anal 20:584–590

  22. Ranjbari E, Biparva P, Hadjmohammadi MR (2012) Utilization of inverted dispersive liquid–liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples. Talanta 89:117–123

    Article  CAS  Google Scholar 

  23. Zu Y, Li C, Fu Y, Zhao C (2006) Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed Anal 41(3):714–719

    Article  CAS  Google Scholar 

  24. Hadjmohammadi MR, Nazari S, Kamel K (2009) Determination of flavonoid markers in honey with SPE and LC using experimental design. Chromatographia 69:1291–1297

    Article  CAS  Google Scholar 

  25. Asadollahi T, Dadfarnia S, Haji Shabani A, Amirkavei M (2015) Separation/preconcentration and determination of quercetin in food samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop-flow injection spectrophotometry. J Food Sci Technol 52:1103–1109

    Article  CAS  Google Scholar 

  26. Baranowska I, Raróg D (2001) Application of derivative spectrophotometry to determination of flavonoid mixtures. Talanta 55:209–212

    Article  CAS  Google Scholar 

  27. Ferey L, Delaunay N, Rutledge DN, Cordella CBY, This H, Huertas A, Raoul Y, Gareil P (2014) Optimizing separation conditions of 19 polycyclic aromatic hydrocarbons by cyclodextrin-modified capillary electrophoresis and applications to edible oils. Talanta 119:572–581

    Article  CAS  Google Scholar 

  28. Ferey L, Delaunay N, Rutledge DN, Huertas A, Raoul Y, Gareil P, Vial J (2013) Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1302:181–190

    Article  CAS  Google Scholar 

  29. Xiao P, Zhao F, Zeng B (2007) Voltammetric determination of quercetin at a multi-walled carbon nanotubes paste electrode. Microchem J 85:244–249

    Article  CAS  Google Scholar 

  30. Jin G-P, He J-B, Rui Z-B, Meng F-S (2006) Electrochemical behavior and adsorptive stripping voltammetric determination of quercetin at multi-wall carbon nanotubes-modified paraffin-impregnated graphite disk electrode. Electrochim Acta 51:4341–4346

    Article  CAS  Google Scholar 

  31. Budejovice CE (2001) Application of micellar electrokinetic capillary chromatography for quantitative analysis of quercetin in plant materials. Electrophoresis 22:1573–1578

  32. Sun Y, Fang N, Chen DDY, Donkor KK (2008) Determination of potentially anti-carcinogenic flavonoids in wines by micellar electrokinetic chromatography. Food Chem 106:415–420

    Article  CAS  Google Scholar 

  33. André C, Castanheira I, Cruz JM, Paseiro P, Sanches-Silva A (2010) Analytical strategies to evaluate antioxidants in food: a review. Trends Food Sci Technol 21:229–246

    Article  Google Scholar 

  34. Melwanki MB, Fuh M-R (2008) Partitioned dispersive liquid–liquid microextraction: an approach for polar organic compounds extraction from aqueous samples. J Chromatogr A 1207:24–28

    Article  CAS  Google Scholar 

  35. Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190:27–38

    Article  CAS  Google Scholar 

  36. Yazdi AS (2011) Surfactant-based extraction methods. Trends Anal Chem 30:918–929

    Article  CAS  Google Scholar 

  37. Amlashi NE, Hadjmohammadi MR, Nazari SSSJ (2014) Water-contained surfactant-based vortex-assisted microextraction method combined with liquid chromatography for determination of synthetic antioxidants from edible oil. J Chromatogr A 1361:9–15

    Article  CAS  Google Scholar 

  38. Amlashi NE, Hadjmohammadi MR (2016) Utilization of water-contained surfactant-based ultrasound-assisted microextraction followed by liquid chromatography for determination of polycyclic aromatic hydrocarbons and benzene in commercial oil sample. J Iran Chem Soc 1–8

  39. Lu L, Zhu L (2012) Effect of a cationic surfactant on the volatilization of PAHs from soil. Environ Sci Pollut Res 19:1515–1523

    Article  CAS  Google Scholar 

  40. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324

    Article  CAS  Google Scholar 

  41. Rezaei F, Yamini Y, Moradi M, Daraei B (2013) Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Anal Chim Acta 804:135–142

    Article  CAS  Google Scholar 

  42. Michalkiewicz MBA, Pyrzynska K (2008) Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J Chromatogr A 1187:18–24

    Article  CAS  Google Scholar 

  43. Pirisi FM, Cabras P, Cao CF, Migliorini M, Muggelli M (2000) Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. J Agric Food Chem 48:1191–1196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hadjmohammadi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekbatani Amlashi, N., Hayati, Z. & Hadjmohammadi, M. Micellar Solution as Green Extractive Solvent for Determination of Content of Quercetin as Natural Antioxidant in Oil Samples. Chromatographia 80, 873–880 (2017). https://doi.org/10.1007/s10337-017-3314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3314-2

Keywords

Navigation