Skip to main content
Log in

System Design and Emerging Hardware Technology for Ion Chromatography

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This review provides an overview of advances in system design for ion chromatography (IC), focusing on the suppressed conductivity detection mode. In particular, advances in automated mobile-phase generation and suppressor technology based on different electrolytic concepts are addressed and novel detection approaches are discussed. Finally, advances in multi-dimensional IC and aspects of miniaturization, including capillary IC instrumentation and chip-based IC, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted (adapted) from [30] with permission. ©2008 American Chemical Society

Fig. 2

Reprinted (adapted) from [35] with permission. © 2012 American Chemical Society

Fig. 3

Reprinted (adapted) from [51] with permission. © 2015 Elsevier

Fig. 4

Reprinted (Adapted) from [62] with permission. © 2016 Elsevier

Fig. 5

Reprinted (Adapted) from [63] with permission. © 2015 American Chemical Society

Fig. 6

Reprinted (Adapted) from [73] with permission. © 2010 American Chemical Society

Fig. 7

Reprinted (Adapted) from [83] with permission. © 2010 Elsevier

Similar content being viewed by others

Abbreviations

AEM:

Anion-exchange membrane

C4D:

Capacitively coupled contactless conductivity detection

CEM:

Cation-exchange membrane

EEG:

Electrolytic eluent generator

IC:

Ion chromatography

IEX:

Ion-exchange chromatography

LOD:

Limit of detection

PEEK:

Poly(ether ether ketone)

RP-LC:

Reversed-phase liquid chromatography

References

  1. Small H (1989) Ion chromatography. Plenum, New York

    Book  Google Scholar 

  2. Mayer SW, Thompkins ER (1947) Ion exchange as a separations method: IV. Theoretical analysis of the column separations process. J Am Chem Soc 69:2866–2874

    Article  CAS  Google Scholar 

  3. Moore S, Stein WH (1951) Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem 192:663–681

    CAS  Google Scholar 

  4. Small H, Stevens T, Bauman WC (1975) Novel ion exchange chromatographic method using conductometric detection. Anal Chem 47:1801–1809

    Article  CAS  Google Scholar 

  5. Sarzanini C, Bruzzoniti MC (2005) New materials: analytical and environmental applications in ion chromatography. Anal Chim Acta 540:45–53

    Article  CAS  Google Scholar 

  6. Haddad PR, Nesterenko PN, Buchberger W (2008) Recent developments and emerging directions in ion chromatography. J Chromatogr A 1184:456–473

    Article  CAS  Google Scholar 

  7. Nordborg A, Hilder EF, Haddad PR (2011) Monolithic phases for ion chromatography. Annu Rev Anal Chem 4:197–226

    Article  CAS  Google Scholar 

  8. Zatirakha AV, Smolenkov AD, Shpigun OA (2016) Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: a review. Anal Chim Acta 904:33–50

    Article  CAS  Google Scholar 

  9. Lu Z, Liu Y, Barreto V, Pohl C, Avdalovic N, Joyce R, Newton B (2002) Determination of anions at trace levels in power plant water samples by ion chromatography with electrolytic eluent generation and suppression. J Chromatogr A 956:129–138

    Article  CAS  Google Scholar 

  10. de Maquillé LDB, Wund P, Renaudin L, Gautier C, Jardy A, Vial J, Thiébaut D, Fichet P, Goutelard F (2015) Determination of gluconate in nuclear waste by high-performance liquid chromatography: comparison of pulsed amperometric detection and electrospray mass spectrometry detection. J Radioanal Nucl Chem 306:213–220

    Article  Google Scholar 

  11. Palermo C, Muscarella M, Nardiello D, Iammarino M, Centonze D (2013) A multiresidual method based on ion-exchange chromatography with conductivity detection for the determination of biogenic amines in food and beverages. Anal Bioanal Chem 405:1015–1023

    Article  CAS  Google Scholar 

  12. Rombouts I, Lamberts L, Celus I, Lagrain B, Brijs K, Delcour JA (2009) Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A 1216:5557–5562

    Article  CAS  Google Scholar 

  13. Farn SS, Yeh YH, Lin WJ, Shen LH (2009) Development and validation of 2-deoxy-2-chloro-d-glucose impurity analysis in [18F]FDG by three potential-time waveforms of high-performance liquid chromatography/pulsed amperometric detection. Nucl Med Biol 36:225–231

    Article  CAS  Google Scholar 

  14. Wang J, Christison TT, Misuno K, Lopez L, Huhmer AF, Huang Y, Hu S (2014) Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with orbitrap mass spectrometry. Anal Chem 86:5116–5124

    Article  CAS  Google Scholar 

  15. Michalski R (2009) Applications of ion chromatography for the determination of inorganic cations. Crit Rev Anal Chem 39:230–250

    Article  CAS  Google Scholar 

  16. De Vos J, Broeckhoven K, Eeltink S (2015) Advances in ultrahigh-pressure liquid chromatography technology and system design. Anal Chem 88:262–278

    Article  Google Scholar 

  17. Wouters B, Bruggink C, Desmet G, Agroskin Y, Pohl CA, Eeltink S (2012) Capillary ion chromatography at high pressure and temperature. Anal Chem 84:7212–7217

    Article  CAS  Google Scholar 

  18. De Vos J, De Pra M, Desmet G, Swart R, Edge T, Steiner F, Eeltink S (2015) High-speed isocratic and gradient liquid-chromatography separations at 1500 bar. J Chromatogr A 1409:138–145

    Article  Google Scholar 

  19. Lucy CA, Wahab MF (2013) Advances in high-speed and high-resolution ion chromatography. LGGC 31:38–42

    Google Scholar 

  20. Lui Y, Srinivasan K, Pohl C, Avdalovic N (2004) Recent developments in electrolytic devices for ion chromatography. J Biochem Biophys Methods 60:205–232

    Article  Google Scholar 

  21. Karu N, Dicinoski GW, Haddad PR (2012) Use of suppressors for signal enhancement of weakly-acidic analytes in ion chromatography with universal detection methods. Trends Anal Chem 40:119–132

    Article  CAS  Google Scholar 

  22. Horvai G, Pungor E (1989) Electrochemical detectors in HPLC and ion chromatography. Crit Rev Anal Chem 21:1–28

    Article  CAS  Google Scholar 

  23. Zhang Z, Khan NM, Nunez KM, Chess EK, Szabo CM (2012) Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Chem 84:4101–4110

    Google Scholar 

  24. Fritz JS, Gjerde DT (2009) Ion Chromatography, 4th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  25. Srinivasan K, Lin R, Saini S, Pohl C, Avdalovic N (2003) A new continuously regenerate trap column for ion chromatography. Pittcon conference paper (2020-2)

  26. Ullah SMR, Adams RL, Srinivasan K, Dasgupta PK (2004) Asymmetric membrane fiber-based carbon dioxide removal devices for ion chromatography. Anal Chem 76:7084–7093

    Article  CAS  Google Scholar 

  27. Masunaga H, Higo Y, Ishii M, Maruyama N, Yamazaki S (2015) Selective removal of carbon dioxide contained in the effluent from ion chromatography suppressor using a new non-vacuum device. J Chromatogr A 1392:69–73

    Article  CAS  Google Scholar 

  28. Strong DL, Dasgupta PK (1991) Electrodialytic production of gas-free sodium hydroxide based on Donnan breakdown. J Membrane Sci 57:321–336

    Article  CAS  Google Scholar 

  29. Strong DL, Ung JC, Dasgupta PK (1991) Electrodialytic eluent generation and suppression: ultralow background conductance suppression anion chromatography. J Chromatogr 546:159–173

    Article  CAS  Google Scholar 

  30. Yang G, Takeuchi M, Dasgupta PK (2008) On-line gas-free electrodialytic eluent generator for capillary ion chromatography. Anal Chem 80:40–47

    Article  CAS  Google Scholar 

  31. Yang B, Zang F, Liang X (2009) A simplified ion exchange bead-based KOH electrodialytic generator for capillary ion chromatography. Talanta 79:68–71

    Article  CAS  Google Scholar 

  32. Small H, Liu Y, Avdalovic N (1998) Electrically polarized ion-exchange beds in ion chromatography: eluent generation and recycling. Anal Chem 70:3629–3635

    Article  CAS  Google Scholar 

  33. Small H, Riviello J (1998) Electrically polarized ion-exchange beds in ion chromatography: ion reflux. Anal Chem 70:2205–2212

    Article  CAS  Google Scholar 

  34. Chen Y, Srinivasan K, Dasgupta PK (2012) Electrodialytic membrane suppressor for ion chromatography make programmable buffer generators. Anal Chem 84:67–75

    Article  CAS  Google Scholar 

  35. Chen Y, Edwards BL, Dasgupta PK, Srinivasan K (2012) pH- and concentration-programmable electrodialytic buffer generator. Anal Chem 84:59–66

    Article  Google Scholar 

  36. Talebi M, Shellie RA, Hilder EF, Lacher NA, Haddad PR (2016) Semiautomated pH gradient ion-exchange chromatography of monoclonal antibody charge variants. Anal Chem 88:2198–2204

    Article  Google Scholar 

  37. Haddad PR, Jackson PE, Shaw MJ (2003) Developments in suppressor technology for inorganic ion analysis by ion chromatography using conductivity detection. J Chromatogr A 1000:725–742

    Article  CAS  Google Scholar 

  38. Schäfer H, Läubli M, Zähner P (1996) Device for ion-exchange chromatography and method of cyclically regenerating a plurality of suppressors of such a device. US Patent 6153101

  39. Sedyohutomo A, Lim LW, Takeuchi T (2008) Development of packed-column suppressor system for capillary ion chromatography and its application to environmental waters. J Chromatogr A 1203:239–242

    Article  CAS  Google Scholar 

  40. Stevens TS, Davis JC, Small H (1981) Hollow fiber ion-exchange suppressor for ion chromatography. Anal Chem 53:1488–1492

    Article  CAS  Google Scholar 

  41. Rokushika S, Sun ZL, Hatano H (1982) Anion chromatography of carboxylic acids and keto acids using a hollow-fibre suppressor. J Chromatogr 253:87–94

    Article  CAS  Google Scholar 

  42. Stillian J (1985) An improved suppressor for ion chromatography. LC Mag 3:802–812

    CAS  Google Scholar 

  43. Weiss J (2004) Handbook of Ion Chromatography, 3rd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  44. Merck Millipore (2016) Continuous anion regeneration system and SeQuant anion membrane suppressor, product brochure

  45. Tian ZW, Hu RZ, Lin HS, Hu JT (1988) effect of suppression efficiency on sensitivity in ion chromatography. J Chromatogr 439:151–157

    Article  CAS  Google Scholar 

  46. Strong DL, Dasgupta PK (1989) Electrodialytic membrane suppressor for ion chromatography. Anal Chem 61:939–945

    Article  CAS  Google Scholar 

  47. Dimitrakopoulos IK, Thomaidis NS, Megoulas NC, Koupparis MA (2010) Effect of suppressor current intensity on the determination of glyphosate and aminomethylphosphonic acid by suppressed conductivity ion chromatography. J Chromatogr A 1217:3619–3627

    Article  CAS  Google Scholar 

  48. Lui Y, Barreto VMB, Pohl CA, Avdalovic N (2006) Capillary ion chromatography. US Patent 0057733

  49. Zhang F, Li Y, Yang B, Liang X (2011) A cation exchange resin bead-based microscale electrolytic suppressor for capillary ion chromatography. Talanta 83:1496–1500

    Article  CAS  Google Scholar 

  50. Saari-Nordhaus R, Anderson JMJ (2002) Recent advances in ion chromatography suppressor improve anion separation and detection. J Chromatogr A 956:15–22

    Article  CAS  Google Scholar 

  51. Elkin K, Riviello J, Small H (2015) Improvements in ion reflux: an electrodialytic eluent generation and suppression device for ion chromatography. J Chromatogr A 1403:63–69

    Article  CAS  Google Scholar 

  52. Li J, Chen M, Zhu Y (2007) Separation and determination of carbohydrates in drinks by ion chromatography with a self-regenerating suppressor and an evaporative light-scattering detector. J Chromatogr A 1155:50–56

    Article  CAS  Google Scholar 

  53. Karu N, Hutchinson JP, Dicinoski GW, Hanna-Brown M, Srinivasan K, Pohl CA, Haddad PR (2012) Determination of pharmaceutically related compounds by suppressed ion chromatography: IV. Interfacing ion chromatography with universal detectors. J Chromatogr A 1253:44–51

    Article  CAS  Google Scholar 

  54. Hu S, Wang J, Ji EH, Christison T, Lopez L, Huang Y (2015) Targeted metabolomic analysis of head and neck cancer cells using high performance ion chromatography coupled with a Q Exactive HF mass spectrometer. Anal Chem 87:6371–6379

    Article  CAS  Google Scholar 

  55. Buchberger W, Ahrer W (1999) Combination of suppressed and non-suppressed ion chromatography with atmospheric pressure ionization mass spectrometry for the determination of anions. J Chromatogr A 850:99–106

    Article  CAS  Google Scholar 

  56. Karu N, Dicinoski GW, Hanna-Brown M, Haddad PR (2011) Determination of pharmaceutically related compounds by suppressed ion chromatography: I. Effects of organic solvent on suppressor performance. J Chromatogr A 1218:9037–9045

    Article  CAS  Google Scholar 

  57. Karu N, Dicinoski GW, Hanna-Brown M, Srinivasan K, Pohl CA, Haddad PR (2012) Determination of pharmaceutically related compounds by suppressed ion chromatography: III. Role of electrolytic suppressor design. J Chromatogr A 1233:71–77

    Article  CAS  Google Scholar 

  58. Karu N, Dicinoski GW, Hanna-Brown M, Haddad PR (2012) Determination of pharmaceutically related compounds by suppressed ion chromatography: II. Interactions of analytes with the suppressor. J Chromatogr A 1224:35–42

    Article  CAS  Google Scholar 

  59. Rabin S, Stillian J, Barreto V, Friedman K, Toofan M (1993) New membrane-based electrolytic suppressor device for suppressed conductivity detection in ion chromatography. J Chromatogr 640:97–109

    Article  CAS  Google Scholar 

  60. Schwartz AJ, Wang Z, Ray SJ, Hieftje GM (2015) Universal anion detection by replacement-ion chromatography with an atmospheric-pressure solution-cathode glow discharge photometric detector. Anal Chem 85:129–137

    Article  Google Scholar 

  61. Gjerde DT, Schmuckler G, Fritz JS (1980) Anion chromatography with low-conductivity eluents. (II). J Chromatogr 187:35–45

    Article  CAS  Google Scholar 

  62. Huang W, Chen H, Hu R (2010) A four-electrode microconstant direct current resistance detector for ion chromatography applying ion-exchange membrane and porous electrode. Talanta 82:1364–1370

    Article  CAS  Google Scholar 

  63. Liao H, Dasgupta PK, Srinivasan H, Liu Y (2015) Mixing characteristics of mixers in flow analysis. Application to two-dimensional detection in ion chromatography. Anal Chem 87:793–800

    Article  CAS  Google Scholar 

  64. Buchberger WW, Haddad PR (1997) Advances in detection techniques for ion chromatrgraphy. J Chromatogr A 789:67–83

    Article  CAS  Google Scholar 

  65. Liao H, Florence Kadjo A, Dasgupta PK (2015) Concurrent high-sensitivity conductometric detection of volatile weak acids in a suppressed anion chromatography system. Anal Chem 87:8342–8346

    Article  CAS  Google Scholar 

  66. Liao H, Dasgupta PK (2016) Permeative amine introduction for very weak acid detection in ion chromatography. Anal Chem 88:2198–2204

    Article  CAS  Google Scholar 

  67. Hilder EF, Zeman AJ, Macka M, Haddad PR (2001) Anion-exchange capillary electrochromatography with indirect UV and direct contactless conductivity detection. Electrophoresis 22:1273–1281

    Article  CAS  Google Scholar 

  68. Kuban P, Müri MA, Hauser PC (2004) Application of contactless conductivity detector to the determination of inorganic ions in ion chromatography. Analyst 129:82–86

    Article  CAS  Google Scholar 

  69. Zhang ZL, Li DD, Liu XY, Subhani Q, Zhu Y, Kang Q, Shen DZ (2012) Determination of anions using monolithic capillary column ion chromatography with end-to-end differential contactless conductometric detectors under resonance approach. Analyst 137:2876–2883

    Article  CAS  Google Scholar 

  70. Zhang M, Stamos BN, Dasgupta PK (2014) Admittance detector for high impedance systems: design and applications. Anal Chem 86:11547–11553

    Article  CAS  Google Scholar 

  71. Zhang M, Stamos BN, Amornthammarong N, Dasgupta PK (2014) Capillary scale admittance detection. Anal Chem 86:11538–11546

    Article  CAS  Google Scholar 

  72. Dasgupta PK, Yang B, Srinivasan K (2012) Ion detector and system. US Patent 0006103

  73. Yang B, Chen Y, Mori M, Ohira SI, Azad AK, Dasgupta PK (2010) Charge detector for the measurement of ionic solutes. Anal Chem 82:951–958

    Article  CAS  Google Scholar 

  74. Giddings JC (1984) Two-dimensional separations: concept and promise. Anal Chem 56:1258–1260

    Article  Google Scholar 

  75. Li X, Carr PW (2011) effects of first dimension eluent composition in two-dimensional liquid chromatography. J Chromatogr A 1218:2214–2221

    Article  CAS  Google Scholar 

  76. Vonk RJ, Gargano AFG, Davydova E, Dekker HL, Eeltink S, de Koning LJ, Schoenmakers PJ (2015) Comprehensive two-dimensional liquid chromatography with stationary-phase-assisted modulation coupled to high-resolution mass spectrometry applied to proteome analysis of Saccharomyces cerevisiae. Anal Chem 87:5387–5394

    Article  CAS  Google Scholar 

  77. Eeltink S, Dolman S, Vivo-Truyols G, Schoenmakers P, Swart R, Ursem M, Desmet G (2010) Selection of column dimensions and gradient conditions to maximize the peak-production rate in comprehensive off-line two-dimensional liquid chromatography using monolithic columns. Anal Chem 82:7015–7020

    Article  CAS  Google Scholar 

  78. Bedani F, Schoenmakers PJ, Janssen HG (2012) Theories to support method development in comprehensive two-dimensional liquid chromatography—a review. J Sep Sci 14:1697–1711

    Article  Google Scholar 

  79. Lim KB, Kassel DB (2006) Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal Biochem 354:213–219

    Article  CAS  Google Scholar 

  80. Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Moller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    Article  CAS  Google Scholar 

  81. Vanhoenacker G, Vandenheede I, David F, Sandra P, Sandra K (2015) Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests. Anal Bioanal Chem 407:355–366

    Article  CAS  Google Scholar 

  82. Hennrich ML, Groenewold V, Kops GJPL, Heck AJR, Mohammed S (2011) Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach. Anal Chem 83:7137–7143

    Article  CAS  Google Scholar 

  83. Brudin SS, Shellie RA, Haddad PR, Schoenmakers PJ (2010) Comprehensive two-dimensional liquid chromatography: ion chromatography x reversed-phase liquid chromatography for separation of low-molar-mass organic acids. J Chromatogr A 1217:6742–6746

    Article  CAS  Google Scholar 

  84. Shellie RA, Tyrrell E, Pohl CA, Haddad PR (2008) Column selection for comprehensive multidimensional ion chromatography. J Sep Sci 31:3287–3296

    Article  CAS  Google Scholar 

  85. Teh HB, Li SFY (2015) Simultaneous determination of bromate, chlorite and haloacetic acids by two-dimensional matrix elimination ion chromatography with coupled conventional and capillary columns. J Chromatogr A 1383:112–120

    Article  CAS  Google Scholar 

  86. Verrey D, Louyer MV, Thomas O, Baures E (2013) Direct determination of trace-level haloacetic acids in drinking water by two-dimensional ion chromatography with suppressed conductivity. Microchem J 110:608–613

    Article  CAS  Google Scholar 

  87. Kraft V, Grützke M, Weber W, Menzel J, Wiemers-Meyer S, Winter M, Nowak S (2015) Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes. J Chromatogr A 1409:201–209

    Article  CAS  Google Scholar 

  88. Johns C, Shellie RA, Pohl CA, Haddad PR (2009) Two-dimensional ion chromatography using tandem ion-exchange columns with gradient-pulse column switching. J Chromatogr A 1216:6931–6937

    Article  CAS  Google Scholar 

  89. Rokushika S, Qiu ZY, Hatano H (1983) Micro column ion chromatography with a hollow fibre suppressor. J Chromatogr 260:81–87

    Article  CAS  Google Scholar 

  90. Kuban P, Dasgupta PK (2004) Capillary ion chromatography. J Sep Sci 27:1441–1457

    Article  CAS  Google Scholar 

  91. Yang B, Zhang F, Liang X (2011) Recent developments in capillary ion chromatography technology. Cent Eur J Chem 10:472–479

    Google Scholar 

  92. Wouters B, Broeckhoven K, Wouters S, Bruggink C, Agroskin Y, Pohl CA, Eeltink S (2014) Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations. J Chromatogr A 1370:63–69

    Article  CAS  Google Scholar 

  93. Broeckhoven K, Desmet G (2014) The future of UHPLC: towards higher pressure and/or smaller particles? Trends Anal Chem 63:65–75

    Article  CAS  Google Scholar 

  94. Huang X, Foss FW, Dasgupta PK (2011) Multilayer chitosan-based open tubular capillary anion exchange column with integrated monolithic capillary suppressor. Anal Chim Acta 707:210–217

    Article  CAS  Google Scholar 

  95. Huang X, Dasgupta PK (2011) Controlled porosity monolithic material as permselective ion exchange membranes. Anal Chim Acta 689:155–159

    Article  CAS  Google Scholar 

  96. Rea JC, Freistadt BS, McDonald D, Farnan D, Wang YJ (2015) Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies. J Chromatogr A 1424:77–85

    Article  CAS  Google Scholar 

  97. Boring CB, Dasgupta PK, Sjörgen A (1998) Compact, field-portable capillary ion chromatograph. J Chromatogr A 804:45–54

    Article  CAS  Google Scholar 

  98. Elkin KR (2014) Portable, fully autonomous, ion chromatography system for on-site analyses. J Chromatogr A 1352:38–45

    Article  CAS  Google Scholar 

  99. Kiplagat IK, Kuban P, Pelcova P, Kuban V (2010) Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns. J Chromatogr A 1217:5116–5123

    Article  CAS  Google Scholar 

  100. Shelor CP, Dasgupta PK, Aubrey A, Davilla AF, Lee MC, McKay CP, Liu Y, Noell AC (2014) What can in situ ion chromatography offer for Mars exploration? Astrobiology 14:577–588

    Article  CAS  Google Scholar 

  101. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  102. Murrihy JP, Breadmore MC, Tan A, McEnery M, Alderman J, O’Mathuna C, O’Neill AP, O’Brien P, Advoldvic N, Haddad PR, Glennon JD (2001) Ion chromatography on-chip. J Chromatogr A 924:233–238

    Article  CAS  Google Scholar 

  103. Kang Q, Golubovic NC, Pinto NG, Henderson HT (2001) An integrated micro ion-exchange separator and detector on a silicon wafer. Chem Eng Sci 56:3409–3420

    Article  CAS  Google Scholar 

  104. Wouters S, Wouters B, Jespers S, Desmet G, Eghbali H, Bruggink C, Eeltink S (2014) Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography. J Chromatogr A 1355:253–260

    Article  CAS  Google Scholar 

  105. Wouters S, Bruggink C, Agroskin Y, Pohl CA, Eeltink S (2016) Microfluidic membrane suppressor module design and evaluation for capillary ion chromatography. J Chromatogr A (submitted for publication)

  106. Wouters S, Bruggink C, Pohl CA, Eeltink S (2016) On the development and assessment of microfluidic membrane suppressors featuring integrated on-chip conductivity detection for capillary ion-exchange chromatography. Lecture presented at the 44th international symposium of high performance liquid phase separations and related techniques (HPLC 2016), San Francisco

Download references

Acknowledgments

Support of this work by grants of the Research Foundation Flanders (FWO) and a PhD grant of the Flemish Agency of Innovation and Entrepreneurship (VLAIO) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiaan Eeltink.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Young Investigators in Separation Science with editors D. Mangelings, G. Massolini, G. K. E. Scriba, R. M. Smith and A. M. Striegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wouters, S., Haddad, P.R. & Eeltink, S. System Design and Emerging Hardware Technology for Ion Chromatography. Chromatographia 80, 689–704 (2017). https://doi.org/10.1007/s10337-016-3184-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3184-z

Keywords

Navigation