Skip to main content
Log in

Novel Anion Exchangers with Spatially Distant Trimethylammonium Groups in Linear and Branched Hydrophilic Functional Layers

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Novel polystyrene–divinylbenzene (PS-DVB) based anion exchangers having branched structure of ion exchange functional groups are prepared and characterised. Two proposed synthetic methods include acylation of PS-DVB microspherical particles followed by reductive amination with dimethylamine or methylamine, which results in obtaining tertiary or secondary amino groups on the surface, respectively. Further alkylation of amino groups was provided by reaction with either (3-chloro-2-hydroxypropyl)trimethylammonium chloride or glycidyltrimethylammonium chloride, which allowed the simultaneous insertion of trimethylammonium functional group and hydrophilic spacer into the structure. The other considered option is reaction with diglycidyl ethers, which requires further amination of terminal epoxide rings with trimethylamine. The proposed approaches resulted in preparation of the ion exchangers with extended linear or branched anion exchange structure with trimethylammonium groups located at a distance from the surface and connected via hydrophilic linkers. The ion exchange selectivity and separation efficiency of obtained anion exchangers are studied for the model mixture of inorganic anions (F, HCOO, Cl, NO2 , Br, NO3 , H\( {\text{PO}}_{ 4}^{2 - } \) and \( {\text{SO}}_{4}^{ 2- } \)) using hydroxide eluents. The adsorbents with branched ion exchange layer having three positively charged sites in the structure of attached groups demonstrate superior column efficiencies and better peak symmetry as compared with anion exchanger having linear structure with two positively charged sites in the chain. In case of branched anion exchangers the calculated values of column efficiencies for polarisable NO3 and Br are 44,000 and 50,000 N/m, respectively, and significantly higher than 7,000 and 8,000 N/m obtained for anion exchanger with linear structure of the ion exchange layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1,4-BDDGE:

1,4-Butanediol diglycidyl ether

CTMA:

(3-Chloro-2-hydroxypropyl)trimethylammonium chloride

EVB-DVB:

Ethylvinylbenzene-divinylbenzene

GTMA:

Glycidyltrimethylammonium chloride

IC:

Ion chromatography

PS-DVB:

Polystyrene-divinylbenzene

RDGE:

Resorcinol diglycidyl ether

TMA:

Trimethylamine

References

  1. Pohl CA (2013) LC-GC North Am 31:16–22

    Google Scholar 

  2. Haddad PR, Nesterenko PN, Buchberger W (2008) J Chromatogr A 1184:456–473

    Article  CAS  Google Scholar 

  3. Paul B, Nesterenko PN (2005) Analyst 130:134–146

    Article  Google Scholar 

  4. Lucy CA, Wahab MF (2013) LC-GC North America 31:38–42

    Google Scholar 

  5. Liang C, Lucy CA (2010) J Chromatogr A 1217:8154–8160

    Article  CAS  Google Scholar 

  6. Tyrrell É, Shellie RA, Hilder EF, Pohl CA, Haddad PR (2009) J Chromatogr A 1216:8512–8517

    Article  CAS  Google Scholar 

  7. Kasiyanova TN, Smolenkov AD, Pirogov AV, Shpigun OA (2008) J Anal Chem 63:41–45

    Article  CAS  Google Scholar 

  8. Barron RE, Fritz JS (1984) J Chromatogr A 284:13–25

    Article  CAS  Google Scholar 

  9. Tyrrell É, Hilder EF, Shalliker RA, Dicinoski GW, Shellie RA, Breadmore MC, Pohl CA, Haddad PR (2008) J Chromatogr A 1208:95–100

    Article  CAS  Google Scholar 

  10. Wahab MF, Pohl CA, Lucy CA (2012) J Chromatogr A 1270:139–146

    Article  CAS  Google Scholar 

  11. Zatirakha AV, Smolenkov AD, Pirogov AV, Nesterenko PN, Shpigun OA (2014) J Chromatogr A 1323:104–114

    Article  CAS  Google Scholar 

  12. Zatirakha AV, Smolenkov AD, D’yachkov IA, Shpigun OA (2011) Mosc Univ Chem Bull 66:309–314

    Article  Google Scholar 

  13. Zatirakha AV, Smolenkov AD, Shpigun OA (2011) Sorbtsionnyye i khromatograficheskiye protsessy 11:235–244

    CAS  Google Scholar 

  14. Shchukina OI, Zatirakha AV, Smolenkov AD, Shpigun OA (2014) Mosc Univ Chem Bull 55:219–227

    Google Scholar 

  15. Kuznetsova OI, Zatirakha AV, Smolenkov AD, Shpigun OA, Tataurova OG (2012) Sorbtsionnyye i khromatograficheskiye protsessy 12:940–948

    CAS  Google Scholar 

  16. Bruzzoniti MC, Mentasti E, Pohl CA, Riviello JM, Sarzanini C (2001) J Chromatogr A 925:99–108

    Article  CAS  Google Scholar 

  17. Wheeler SE, Houk K (2010) J Phys Chem A 114:8658–8664

    Article  CAS  Google Scholar 

  18. Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68–83

    Article  CAS  Google Scholar 

  19. Slingsby RW, Pohl CA (1988) J Chromatogr A 458:241–253

    Article  CAS  Google Scholar 

  20. Kas’yanova TN, Smolenkov AD, Pirogov AV, Shpigun OA (2007) Mosc Univ Chem Bull 62:290–294

    Article  Google Scholar 

  21. Pohl C, Saini C (2008) J Chromatogr A 1213:37–44

    Article  CAS  Google Scholar 

  22. Laskin S, Drew RT, Capiello V (1975) Arch Environ Health 30:70–72

    Article  CAS  Google Scholar 

  23. Xu H, Hu X (1999) React Funct Polym 42:235–242

    Article  CAS  Google Scholar 

  24. Kulin L-I, Flodin P, Ellingsen T, Ugelstad J (1990) J Chromatogr A 514:1–9

    Article  CAS  Google Scholar 

  25. Tomoi M, Kori N, Kakiuchi H (1986) Makromol Chem 187:2753–2761

    Article  CAS  Google Scholar 

  26. Caze C, Hodge P (1990) Makromol Chem 191:1633–1640

    Article  CAS  Google Scholar 

  27. Buszewski B, Jaćkowska M, Bocian S, Kosobucki P, Gawdzik B (2011) J Sep Sci 34:601–608

    Article  CAS  Google Scholar 

  28. Jaćkowska M, Bocian S, Gawdzik B, Grochowicz M, Buszewski B (2011) Mat Chem Phys 130:644–650

    Article  Google Scholar 

  29. Li Y, Yang J, Jin J, Sun X, Wang L, Chen J (2014) J Chromatogr A 1337:133–139

    Article  CAS  Google Scholar 

  30. Jaćkowska M, Bocian S, Buszewski B (2012) Analyst 137:4610–4617

    Article  Google Scholar 

  31. Studzińska S, Rola R, Buszewski B (2014) J Chromatogr B 949–950:87–93

    Article  Google Scholar 

  32. Bocian S, Studzińska S, Buszewski B (2014) Talanta 127:133–139

    Article  CAS  Google Scholar 

  33. http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm (2013). Accessed June 2013

  34. Bogolitsyna AA, Pirogov AV, Shpigun OA (2006) Mosc Univ Chem Bull 61:36–39

    Google Scholar 

  35. Madden JE, Avdalovic N, Jackson PE, Haddad PR (1999) J Chromatogr A 837:65–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zatirakha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukina, O.I., Zatirakha, A.V., Smolenkov, A.D. et al. Novel Anion Exchangers with Spatially Distant Trimethylammonium Groups in Linear and Branched Hydrophilic Functional Layers. Chromatographia 78, 147–155 (2015). https://doi.org/10.1007/s10337-014-2831-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2831-5

Keywords

Navigation