Skip to main content
Log in

Rainforest birds avoid biotic signal masking only in cases of high acoustic saturation

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Acoustic signaling among birds is central to intra-species communication, courtship, and reproductive success, and so habitat suitability is partially dependent upon the availability of a suitable acoustic niche. It is well documented that birds may modify their vocal behavior to avoid overlap with anthropogenic noise pollution, but responses to biotic signal making are less well understood. This study uses more than 50,000 h of audio recorded in tropical forest, and machine learning methods for the detection of the vocalizations of nine species of bird and tymbalizations of three species of cicada to examine patterns of signal masking and co-chorusing avoidance among species pairs. Among these focal species, no bird avoided co-chorusing with any other bird. Birds avoided co-chorusing with cicadas only and always when (1) the bird vocalized in a frequency band completely overlapped by the cicada tymbalization, and (2) the cicada tymbalization saturated the majority of that frequency band. These results indicate that avian behavioral modifications in response to biotic noise in longstanding species communities is similar to behavioral modifications observed in populations subjected to high levels of anthropogenic noise pollution—in all cases overlap avoidance is species-specific and dependent upon both frequency and intensity.

Zusammenfassung

Regenwaldvögel vermeiden biotische Signalmaskierung nur bei hoher akustischer Sättigung

Akustische Signalübertragung zwischen Vögeln ist von zentraler Bedeutung für die Kommunikation innerhalb der Art, die Balz und den Fortpflanzungserfolg. Daher hängt die Eignung eines Lebensraums zumindest teilweise von der Verfügbarkeit geeigneter akustischer Nischen ab. Es ist wohl bekannt, dass Vögel ihr Stimmverhalten verändern können, um Überschneidungen mit anthropogener Lärmbelästigung zu vermeiden. Ihre Reaktionen auf Signalmaskierung seitens biotischer Quellen sind jedoch weniger gut verstanden. Diese Studie basiert auf 50.000 Stunden von Audio-Material, welches in tropischen Wäldern aufgenommen wurde, sowie auf Methoden des maschinellen Lernens zur Erkennung der Lautäußerungen von neun Vogelarten und der Timbalisationen von drei Zikadenarten, um Muster der Signalmaskierung und der Vermeidung des simultanen Vokalisierens zwischen Artenpaaren zu untersuchen. Unter den Schwerpunktarten vermied keiner der Vögel simultanes Vokalisieren mit einer anderen Vogelart. Vögel vermieden simultanes Vokalisieren mit Zikaden immer nur dann, wenn (1) das Frequenzband der Vogelstimme ganz mit dem der Zikaden-Timbalisation überlappte, und wenn (2) die Zikaden-Timbalisation den Großteil dieses Frequenzbands sättigte. Diese Ergebnisse deuten darauf hin, dass Verhaltensveränderungen in Vögeln als Reaktion auf biotischen Lärm in langjährigen Artengemeinschaften denjenigen Verhaltensveränderungen ähneln, die in Populationen beobachtet werden, welche in einem hohen Ausmaß anthropogener Lärmbelästigung ausgesetzt sind – in all diesen Fällen ist die Vermeidung von Überscheidungen artspezifisch und hängt von Frequenz und Intensität ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Original audio files are archived in the Fonoteca Neotropical Jacques Vielliard (FNJV) Audiovisual Collection [https://www2.ib.unicamp.br/fnjv/].

References

  • Arroyo-Solís A, Castillo JM, Figueroa E, López-Sánchez JL, Slabbekoorn H (2013) Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. J Avian Biol 44(3):288–296

    Article  Google Scholar 

  • Brumm H, Zollinger SA (2013) Avian vocal production in noise. In Animal communication and noise (pp. 187–227). Springer, Berlin, Heidelberg

  • Catchpole CK, Slater PJ (2003) Bird song: biological themes and variations. Cambridge University Press, Cambridge

    Google Scholar 

  • Cochran WG (1954) Some methods for strengthening the common χ 2 tests. Biometrics 10(4):417–451

  • Cody ML, Brown JH (1969) Song asynchrony in neighbouring bird species. Nature 222:778–780. https://doi.org/10.1038/222778b0

    Article  ADS  Google Scholar 

  • Do Nascimento L, Pérez-Granados C, Alencar JBR, Beard K (2023) Amazonian soundscapes: unravelling the secrets of insect acoustic niches in diverse habitats. EcoEvoRxiv. https://doi.org/10.32942/X2102P

  • Duffels JP, Schouten MA, Lammertink M (2007) A revision of the cicadas of the Purana tigrina group (Hemiptera, Cicadidae) in Sundaland. Tijd Entomologie 150(2):367

  • Duffels H, Trilar T (2012) Taxonomy and song of the cicada Ayesha serva (Walker, 1850) from the coasts of northern Sundaland. Tijd Entomologie 155(2–3):269–283

  • Ficken RW, Ficken MS, Hailman JP (1974) Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183:762–763. https://doi.org/10.1126/science.183.4126.762

    Article  CAS  PubMed  ADS  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011) Noise pollution filters bird communities based on vocal frequency. PLoS ONE 6:e27052. https://doi.org/10.1371/journal.pone.0027052

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Gogala M, Riede K (1995) Time sharing of song activity by cicadas in Temengor Forest Reserve, Hulu Perak, and in Sabah, Malaysia. Malay Nat J 48:97–305

    Google Scholar 

  • Grolemund G, Wickham H (2011) Dates and times made easy with lubridate. J Stat Soft 40:1–25

    Article  Google Scholar 

  • Hart PJ, Hall R, Ray W, Beck A, Zook J (2015) Cicadas impact bird communication in a noisy tropical rainforest. Behav Ecol 26:839–842. https://doi.org/10.1093/beheco/arv018

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart PJ, Ibanez T, Paxton K, Tredinnick G, Sebastián-González E, Tanimoto-Johnson A (2021) Timing is everything: acoustic niche partitioning in two tropical wet forest bird communities. Front Ecol Evol 9:753363. https://doi.org/10.3389/fevo.2021.753363

    Article  Google Scholar 

  • Jain M, Diwakar S, Bahuleyan J, Deb R, Balakrishnan R (2014) A rain forest dusk chorus: cacophony or sounds of silence?. Evol Ecol 28(1):1–22

  • Kirschel AN, Blumstein DT, Cohen RE, Buermann W, Smith TB, Slabbekoorn H (2009) Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. Behav Ecol 20:1089–1095. https://doi.org/10.1093/beheco/arp101

    Article  Google Scholar 

  • Kleyn T, da Cruz KM, Passos LF (2021) Sharing sound: avian acoustic niches in the Brazilian Atlantic Forest. Biotropica 53:658–670

    Article  Google Scholar 

  • Kos M, Gogala M (2000) The cicadas of the Purana nebulilinea group (Homoptera, Cicadidae) with a note on their songs. Tijd Entomologie 143(1):1–25

  • Krause BL (1993) The niche hypothesis: a virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundscape Newslett 6:6–10

  • Lohr B, Wright TF, Dooling RJ (2003) Detection and discrimination of natural calls in masking noise by birds: estimating the active space of a signal. Anim Behav 65:763–777. https://doi.org/10.1006/anbe.2003.2093

    Article  Google Scholar 

  • Luther D (2009) The influence of the acoustic community on songs of birds in a neotropical rain forest. Behav Ecol 20:864–871. https://doi.org/10.1093/beheco/arp074

    Article  Google Scholar 

  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Instit 22(4):719–748

  • Masco C, Allesina S, Mennill DJ, Pruett-Jones S (2016) The Song Overlap Null model Generator (SONG): a new tool for distinguishing between random and non-random song overlap. Bioacoustics 25:29–40. https://doi.org/10.1080/09524622.2015.1079734

    Article  Google Scholar 

  • Prešern J, Gogala M, Trilar T (2004) Comparison of Dundubia vaginata (Auchenorrhyncha: Cicadoidea) songs from Borneo and Peninsular Malaysia. Acta Entomol Slov 12(2):239–248

  • Rheindt FE (2003) The impact of roads on birds: does song frequency play a role in determining susceptibility to noise pollution?. J Ornithol 144(3):295–306

  • Schmidt AK, Römer H, Riede K (2013) Spectral niche segregation and community organization in a tropical cricket assemblage. Behav Ecol 24:470–480. https://doi.org/10.1093/beheco/ars187

    Article  Google Scholar 

  • Stanley CQ, Walter MH, Venkatraman MX, Wilkinson GS (2016) Insect noise avoidance in the dawn chorus of Neotropical birds. Anim Behav 112:255–265. https://doi.org/10.1016/j.anbehav.2015.12.003

    Article  Google Scholar 

  • Sueur J (2002) Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae). Biol J Lin Soc 75:379–394. https://doi.org/10.1046/j.1095-8312.2002.00030.x

    Article  Google Scholar 

  • Trilar T (2006) Frequency modulated song of the cicada Kalabita operculata (Auchenorrhyncha: Cicadoidea) from Borneo. Russ Entomol J 15(3):341–346

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Yang XJ, Ma XR, Slabbekoorn H (2014) Timing vocal behaviour: experimental evidence for song overlap avoidance in Eurasian wrens. Behav Proc 103:84–90. https://doi.org/10.1016/j.beproc.2013.11.011

    Article  Google Scholar 

  • Young AM (1981) Temporal selection for communicatory optimization: the dawn-dusk chorus as an adaptation in tropical cicadas. Am Nat 117(5):826–829

Download references

Funding

Funding was provided by the Wildlife Reserves Singapore Conservation Fund.

Author information

Authors and Affiliations

Authors

Contributions

Laura Berman and Frank Rheindt contributed towards study conception and design. Material preparation and data collection were performed by Laura Berman and Ulmar Grafe. Machine learning species classifiers and data analysis were done by Laura Berman and Wei Xuan Tan. The first draft of this manuscript was prepared by Laura Berman. All authors contributed towards and approved the final manuscript.

Corresponding author

Correspondence to Frank Rheindt.

Ethics declarations

Declarations

Ethical approval

Audio equipment was deployed under Singapore National Parks Board permit number NP/RP19-113. All work done in association with this manuscript complies with the current laws of the countries in which it was performed.

Conflict of interest

The authors declare that they have no competing interests to disclose.

Additional information

Communicated by T. S. Osiejuk.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berman, L.M., Tan, W.X., Grafe, U. et al. Rainforest birds avoid biotic signal masking only in cases of high acoustic saturation. J Ornithol (2024). https://doi.org/10.1007/s10336-024-02158-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10336-024-02158-z

Keywords

Navigation