Skip to main content

Advertisement

Log in

Incubation scheduling by African Black Oystercatchers: effects of weather, tide phase, and time of day

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Constant nest attentiveness, which benefits avian embryos, and body maintenance activities (e.g., foraging trips) by incubating parents are mutually exclusive activities. To balance these, parents must schedule the time spent on and off their nests according to a wide range of environmental conditions that change the costs and benefits of breaking or continuing an incubation bout. Here, we used data from 38 camera-monitored nests over two breeding seasons on Robben Island, Southern Africa to examine how African Black Oystercatchers Haematopus moquini, a biparental incubator, varied incubation bout length in relation to environmental variables that would have affected energy/water budgets: tide phase, air temperature, windspeed and time of day (day versus night). We predicted that incubation bout duration would decrease at high temperatures and wind speeds when energetic and water needs increase and increase at high tides when foraging opportunities decrease. Oystercatchers’ overall nest attentiveness was high at 95%. Incubation bout length was longer at high tide and at night than at low tide and during the day. Incubation bout length decreased with increases in temperature but had a non-linear relationship with windspeed that varied by the time of day: it increased sharply with windspeed and plateaued at high windspeed during the day, but largely declined with moderate to high windspeeds at night. These results suggest that oystercatchers’ energetic, thermoregulatory, and hydration needs may have increased with high heat loads during the day but decreased at night and with increased windspeed during the day, and oystercatchers responded by varying incubation bout lengths accordingly. The proximity of their nests to the intertidal zone, which means short travel time and quick access to food, water, and thermoregulatory opportunities, seems to be of vital importance to their capacity to maintain high nest attentiveness and deal with increasing heat loads.

Zusammenfassung

Zeitmanagement bei brütenden Kapausternfischern Haematopus moquini : Einflüsse von Wetter, Gezeiten und Tageszeit

Ständige Nestfürsorge, die den Vogelembryos zugutekommt, und Selbsterhaltungsmaßnahmen (beispielsweise Nahrungssuche) der brütenden Elterntiere sind Aktivitäten, die sich gegenseitig ausschließen. Um diese miteinander vereinbaren zu können, müssen die Eltern die auf dem oder fern vom Nest verbrachte Zeit abhängig von einem breiten Spektrum an Umweltvariablen organisieren, welche Kosten und Nutzen der Entscheidung, eine Brutpause einzulegen oder nicht, verändern. Auf der Grundlage von an 38 kameraüberwachten Nestern über zwei Brutsaisons auf Robben Island (Südafrika) gewonnenen Daten untersuchten wir, wie Kapausternfischer Haematopus moquini, eine Vogelart, bei der beide Elternteile brüten, die Dauer der Brutphasen im Verhältnis zu Umweltvariablen mit Einfluss auf ihren Energie- und Wasseraushalt veränderten: Gezeitenphase, Lufttemperatur, Windgeschwindigkeit und Tageszeit (Tag/Nacht). Wir erwarteten, dass die Länge der Brutabschnitte bei hohen Temperaturen und Windgeschwindigkeiten mit wachsendem Energie- und Wasserbedarf abnähmen; wenn bei Flut die Nahrungssuche schwieriger wird, sollte die Länge der Brutphasen dagegen zunehmen. Insgesamt verbrachten die Austernfischer mit 95% einen Großteil der Zeit auf dem Nest. Die Brutphasen waren bei Flut und des Nachts länger als bei Ebbe und tagsüber. Die Dauer der Brutphasen nahm mit zunehmender Umgebungstemperatur ab, stand jedoch mit der Windgeschwindigkeit in einem nichtlinearen Verhältnis, welches sich mit der Tageszeit änderte: Tagsüber stieg die Dauer mit der Windgeschwindigkeit steil an, um bei hoher Windgeschwindigkeit ein Plateau zu erreichen; nachts dagegen fiel sie bei mittleren bis hohen Windgeschwindigkeiten zumeist ab. Diese Ergebnisse deuten darauf hin, dass der Bedarf der Austernfischer hinsichtlich Energie, Thermoregulation und Wasserzufuhr mit wachsender Wärmebelastung im Tagesverlauf angestiegen, bei Nacht jedoch sowie bei zunehmender Windgeschwindigkeit bei Tag gesunken sein könnte und dass die Austernfischer darauf mit entsprechenden Änderungen in der Brutdauer reagierten. Die räumliche Nähe der Nester zur Gezeitenzone bedeutet kurze Wege sowie schnellen Zugang zu Nahrung, Wasser und thermoregulatorischen Möglichkeiten und scheint von entscheidender Bedeutung für die Fähigkeit der Austernfischer zu starker Nestfürsorge und der Bewältigung zunehmender Wärmebelastung zu sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data access statement

Data and r script are available as supplementary files. Data can also be accessed through University of Cape Town's Zivahub Digital Repository.

References

  • Adams N, KerleyZ G, Watson J (1999) Disturbance of incubating African Black Oystercatchers: is heating of exposed eggs a problem? Ostrich 70:225–228

    Article  Google Scholar 

  • Afton AD (1980) Factors affecting incubation rythms of Northern Shovelers. Condor 82:132–137

    Article  Google Scholar 

  • AlRashidi M (2016) The challenge of coping in an extremely hot environment: a case study of the incubation of Lesser Crested Terns (Thalasseus bengalensis). Waterbirds 39:215–221

    Article  Google Scholar 

  • AlRashidi M, Kosztolányi A, Küpper C et al (2010) The influence of extreme hot environment on biparental incubation of a ground-nesting shorebird, the Kentish Plover Charadrius alexandrinus. Front Zool 7:1–10

    Article  Google Scholar 

  • AlRashidi M, Kosztolányi A, Shobrak M et al (2011) Parental cooperation in an extreme hot environment: natural behaviour and experimental evidence. Anim Behav 82:235–243

    Article  Google Scholar 

  • Amat JA, Masero JA (2004) How Kentish Plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behav Ecol Sociobiol 56:26–33

    Article  Google Scholar 

  • Amat JA, Masero JA (2007) The functions of belly-soaking in Kentish Plovers Charadrius alexandrinus. Ibis 149:91–97

    Article  Google Scholar 

  • Amininasab SM, Kingma SA, Birker M et al (2016) The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird. Behav Ecol Sociobiol 70:1591–1600

    Article  Google Scholar 

  • Ar A, Rahn H (1980) Water in the avian egg: overall budget of incubation. Am Zool 20:373–384

    Article  Google Scholar 

  • Azaki BDA (2021) The breeding ecology and behavioural adaptations of African Black Oystercatchers in light of climate change. Ph.D. Thesis University of Cape Town. https://open.uct.ac.za/handle/11427/35657

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Battley PF, Rogers DI, Piersma T, Koolhaas A (2003) Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103:97–103

    Article  Google Scholar 

  • Bourne AR, Ridley AR, Mckechnie AE et al (2021) Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the Southern Pied babbler Turdoides bicolor. Conserv Physiol 9:1–16. https://doi.org/10.1093/conphys/coab043

    Article  Google Scholar 

  • Brambilla M, Scridel D, Sangalli B et al (2019) Ecological factors affecting foraging behaviour during nestling rearing in a high-elevation species, the White-winged Snowfinch (Montifringilla nivalis). Ornis Fenn 96:142–151

    Google Scholar 

  • Bulla M, Valcu M, Rutten AL, Kempenaers B (2014) Biparental incubation patterns in a high-arctic breeding shorebird: how do pairs divide their duties? Behav Ecol 25:152–164

    Article  Google Scholar 

  • Bulla M, Stich E, Valcu M, Kempenaers B (2015) Off-nest behaviour in a biparentally incubating shorebird varies with sex, time of day and weather. Ibis 157:575–589

    Article  Google Scholar 

  • Burger J (2018) Use of intertidal habitat by four species of shorebirds in an experimental array of oyster racks, reefs and controls on Delaware Bay, New Jersey: avoidance of oyster racks. Sci Total Environ 624:1234–1243

    Article  CAS  Google Scholar 

  • Burger J, Niles L, Jeitner C, Gochfeld M (2018) Habitat risk: Use of intertidal flats by foraging Red Knots (Calidris canutus rufa), Ruddy Turnstones, (Arenaria interpres), Semipalmated Sandpipers (Calidris pusilla), and Sanderling (Calidris alba) on Delaware Bay beaches. Environ Res 165:237–246

    Article  CAS  Google Scholar 

  • Buxton EJM (1961) The inland breeding of the oystercatcher in Great Britain, 1958–59. Bird Study 8:198–209

    Article  Google Scholar 

  • Cantar RV, Montgomerie RD (1985) The influence of weather on incubation scheduling of the White-rumped Sandpiper (Calidris fuscicollis): a uniparental incubator in a cold environment. Behaviour 95:261–289

    Article  Google Scholar 

  • Cervencl A, Esser W, Maier M et al (2011) Can differences in incubation patterns of common Redshanks Tringa totanus be explained by variations in predation risk? J Ornithol 152:1033–1043. https://doi.org/10.1007/s10336-011-0696-z

    Article  Google Scholar 

  • Chaurand T, Weimerskirch H (1994) Incubation routine, body mass regulation and egg neglect in the Blue Petrel Halobaena caerulea. Ibis 136:285–290

    Article  Google Scholar 

  • Cresswell W (1997) Nest predation: the relative effects of nest characteristics, clutch size and parental behaviour. Anim Behav 53:93–103

    Article  Google Scholar 

  • Cresswell W, Holt S, Reid JM et al (2003) Do energetic demands constrain incubation scheduling in a biparental species? Behav Ecol 14:97–102

    Article  Google Scholar 

  • Cresswell W, Holt S, Reid JM et al (2004) The energetic costs of egg heating constrain incubation attendance but do not determine daily energy expenditure in the Pectoral Sandpiper. Behav Ecol 15:498–507

    Article  Google Scholar 

  • Dawson WR (1982) Evaporative losses of water by birds. Comp Biochem Physiol 71A:495–509

    Article  Google Scholar 

  • De Marchi G, Chiozzi G, Dell’Omo G, Fasola M (2015) Low incubation investment in the burrow-nesting Crab Plover Dromas ardeola permits extended foraging on a tidal food resource. Ibis 157:31–43

    Article  Google Scholar 

  • Dickinson AM, Goodman AM, Deeming DC (2019) Air movement affects insulatory values of nests constructed by Old World Warblers. J Therm Biol 81:194–200

    Article  Google Scholar 

  • Ekanayake KB, Weston MA, Nimmo DG et al (2015) The bright incubate at night: sexual dichromatism and adaptive incubation division in an open-nesting shorebird. Proc R Soc B Biol Sci 282:20143026

    Article  Google Scholar 

  • Gerson AR, McKechnie AE, Smit B et al (2019) The functional significance of facultative hyperthermia varies with body size and phylogeny in birds. Funct Ecol 33:597–607

    Article  Google Scholar 

  • Grant GS (1982) Avian incubation: egg temperature, nest humidity, and behavioural thermoregulation in a hot environment. Ornithol Monogr 30:1–75

    Google Scholar 

  • Grémillet D (1997) Catch per unit effort, foraging efficiency, and parental investment in breeding Great Cormorants (Phalacrocorax carbo carbo). ICES J Mar Sci 54:635–644

    Article  Google Scholar 

  • Hall KRL (1959) Observations on the nest-sites and nesting behaviour of the Black Oystercatcher Haematopus moquini in the Cape Peninsula. Ostrich 30:143–154

    Article  Google Scholar 

  • Heenan CB, Seymour RS (2012) The effect of wind on the rate of heat loss from avian cup-shaped nests. PLoS One 7:e32252

    Article  CAS  Google Scholar 

  • Hilton GM, Ruxton GD, Reid JM, Monaghan P (2004) Using artificial nests to test importance of nesting material and nest shelter for incubation energetics. Auk 121:777–787

    Article  Google Scholar 

  • Hockey PAR (1981) Morphometrics and sexing of the African Black Oystercatcher. Ostrich 52:244–247

    Article  Google Scholar 

  • Hockey PAR (1983) Ecology of the African Black Oystercatcher Haematopus moquini. University of Cape Town, Cape Town

    Google Scholar 

  • Hoppe IR, Harrison JO, Raynor EJ et al (2019) Temperature, wind, vegetation, and roads influence incubation patterns of Greater Prairie-Chickens (Tympanuchus cupido pinnatus) in the Nebraska Sandhills, USA. Can J Zool 97:91–99. https://doi.org/10.1139/cjz-2018-0130

    Article  Google Scholar 

  • Klimczuk E, Halupka L, Czyż B et al (2015) Factors driving variation in biparental incubation behaviour in the Reed Warbler Acrocephalus scirpaceus. Ardea 103:51–59

    Article  Google Scholar 

  • Kohler S, Bonnevie B, Dano S (2009) Can eyeflecks be used to sex African Black Oystercatchers Haematopus moquini in the field? Ostrich 80:109–110

    Article  Google Scholar 

  • Leseberg A (2001) The foraging ecology, demographics and conservation of African Black Oystercatchers Haematopus moquini in Namibian nursery areas. University of Cape Town, Cape Town

    Google Scholar 

  • MacDonald EC, Camfield AF, Jankowski JE, Martin K (2013) Extended incubation recesses by alpine-breeding Horned Larks: a strategy for dealing with inclement weather? J F Ornithol 84:58–68

    Article  Google Scholar 

  • Martin TE, Scott J, Menge C (2000) Nest predation increases with parental activity: separating nest site and parental activity effects. Proc R Soc B Biol Sci 267:2287–2293

    Article  CAS  Google Scholar 

  • Martin TE, Auer SK, Bassar RD et al (2007) Geographic variation in avian incubation periods and parental influences on embryonic temperature. Evolution 61:2558–2569

    Article  Google Scholar 

  • Moreno J (1989) Strategies of mass change in breeding birds. Biol J Linn Soc 37:297–310

    Article  Google Scholar 

  • Ntiamoa-Baidu Y, Piersma T, Wiersma P et al (1998) Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana. Ibis 140:89–103

    Article  Google Scholar 

  • Oswald SA, Bearhop S, Furness RW et al (2008) Heat stress in a high-latitude seabird: effects of temperature and food supply on bathing and nest attendance of Great Skuas Catharacta skua. J Avian Biol 39:163–169

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing

  • Ramli R, Norazlimi NA (2016) Effects of tidal states and time of day on the abundance and behavior of shorebirds utilizing tropical intertidal environment. J Anim Plant Sci 26:1164–1171

    Google Scholar 

  • Sharpe L, Cale B, Gardner JL (2019) Weighing the cost: the impact of serial heatwaves on body mass in a small Australian passerine. J Avian Biol 50:1–9

    Article  Google Scholar 

  • Sládeček M, Vozabulová E, Šálek ME, Bulla M (2019) Diversity of incubation rhythms in a facultatively uniparental shorebird—the Northern Lapwing. Sci Rep 9:1–11

    Article  Google Scholar 

  • Spiegel CS, Haig SM, Goldstein MI, Huso M (2012) Factors affecting incubation patterns and sex roles of Black Oystercatchers in Alaska. Condor 114:123–134

    Article  Google Scholar 

  • Thierry A-M, Massemin S, Handrich Y, Raclot T (2013) Elevated corticosterone levels and severe weather conditions decrease parental investment of incubating Adélie Penguins. Horm Behav 63:475–483

    Article  CAS  Google Scholar 

  • Tulp I, Schekkerman H (2006) Time allocation between feeding and incubation in uniparental arctic-breeding shorebirds: energy reserves provide leeway in a tight schedule. J Avian Biol 37:207–218. https://doi.org/10.1111/j.2006.0908-8857.03519.x

    Article  Google Scholar 

  • Vafidis JO, Facey RJ, Leech D, Thomas RJ (2018) Supplemental food alters nest defence and incubation behaviour of an open-nesting wetland songbird. J Avian Biol 49:e01672

    Article  Google Scholar 

  • Weathers WW (1981) Physiological thermoregulation in heat-stressed birds: consequences of body size. Physiol Zool 54:345–361

    Article  Google Scholar 

  • Wilson AM, Vickery JA, Brown A et al (2005) Changes in the numbers of breeding waders on lowland wet grasslands in England and Wales between 1982 and 2002. Bird Study 52:55–69

    Article  Google Scholar 

  • Yorio P, Boersma PDEE (1994) Causes of nest desertion during incubation in the Magellanic Penguin (Spheniscus magellanicus). Condor 96:1076–1083

    Article  Google Scholar 

  • Zhang L, Shu M, An B et al (2017) Biparental incubation pattern of the Black-necked Crane on an alpine plateau. J Ornithol 158:697–705. https://doi.org/10.1007/s10336-017-1439-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leventis Foundation through the A. P. Leventis Ornithological Research Institute, Jos, Nigeria. Mr Sabelo Madlala and his team from the Environmental Unit of Robben Island Museum facilitated access to Robben Island. Air temperature data were provided by the South African Weather Services through Elsa DeJager, Lucky Dlamini, and Musa Mkhwanazi. Tide height data for the Cape Town harbour area were supplied by the Hydrographer, South African Navy, Ruth Farre. Professor LG Underhill, Ms Sue Kuyper and all the field assistants who supported fieldwork during this research are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

BDAB: conceptualization, data curation, funding acquisition, methodology design, resources, investigation, formal analysis, visualization, writing—original draft, writing—review and editing; SJC: validation, supervision, writing—review and editing; WC: methodology design, resources, validation, writing—review and editing.

Corresponding author

Correspondence to Bukola D. A. Braimoh-Azaki.

Ethics declarations

Conflict of interests

The authors have no competing interests.

Ethics statement

Ethical clearance were given by the Science Faculty Animal Ethics Committee, University of Cape Town (2018/v5/LU) and the Department of Agriculture Forestry and Fisheries and Department of Environmental Affairs (RES2017/48, RES2018/48).

Additional information

Communicated by F. Bairlein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braimoh-Azaki, B.D.A., Cunningham, S.J. & Cresswell, W. Incubation scheduling by African Black Oystercatchers: effects of weather, tide phase, and time of day. J Ornithol 164, 139–149 (2023). https://doi.org/10.1007/s10336-022-02023-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-022-02023-x

Keywords

Navigation