Skip to main content
Log in

Apparent survival and dispersal in a recovered Osprey population: effects of age, sex and social status

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Dispersal and survival are important determinants of population dynamics and should be monitored in both threatened and recovered populations. We used colour ringing with a capture–mark–recapture approach to estimate the age distribution, survival and dispersal in a recently recovered Baltic Osprey Pandion haliaetus population. The mean age of breeding Ospreys was 5.5 years (5.5 years in males and 5.4 years in females). The mean age of floaters was 3.1 years (3.3 years in males and 2.9 years in females). The re-sighting probability was best modelled as a time-independent function of five age classes separately for both sexes, and it increased with age. In females, the re-sighting probability increased from 0.03 in 1-year-old birds to 0.77 at 5 years and older; in males, it increased from 0.01 to 0.54. The best models for apparent survival included two age classes. Survival was lower for 1-year-old females (0.14) than males (0.27); the survival difference was retained at > 1 year of age (females 0.64 and males 0.74). Apparent survival (0.72) was similar for satellite-tracked adult Ospreys. Floaters were rare; however, their survival (0.70) was similar to that of breeders. Mean natal dispersal distances were significantly longer for females (164 km) than for males (47 km). Breeding dispersal was recorded in 5% of breeders (mean distance, 11.1 km). The relatively high (apparent) mortality in the Baltic population may be partly explained by competition in breeding grounds and threats during migration and wintering. However, permanent emigration may contribute to the low apparent survival.

Zusammenfassung

Überleben und Ausbreitung einer Fischadler-Population nach ihrer Erholung: Auswirkungen von Geschlecht, Alter und sozialem Status

Überleben und Ausbreitung sind wichtige Determinanten der Populationsdynamik und sollten sowohl bei bedrohten als auch bei wiederhergestellten Populationen überwacht werden. Wir verwendeten Farbberingung mit einem Fang-Wiederfang-Ansatz, um die Altersverteilung, das Überleben und die Ausbreitung in einer kurz davor wiederhergestellten baltischen Fischadler (Pandion haliaetus)-Population zu erfassen. Das Durchschnittsalter der brütenden Fischadler betrug 5,5 Jahre (5,5 Jahre bei Männchen und 5,4 Jahre bei Weibchen). Das mittlere Alter der nicht brütenden Tiere („Floaters“) lag bei 3,1 Jahren (3,3 Jahre bei Männchen und 2,9 Jahre bei Weibchen). Die Wahrscheinlichkeit für eine erneute Sichtung wurde am zweckmäßigsten als zeitunabhängige Funktion von fünf Altersklassen getrennt für beide Geschlechter modelliert und stieg mit dem Alter an. Für die Weibchen wuchs diese Wahrscheinlichkeit von 0,03 bei 1-jährigen auf 0,77 bei 5-jährigen und älteren Vögeln; bei den Männchen stieg sie von 0,01 auf 0,54. Die besten Modelle für das Überleben beinhalteten zwei Altersklassen. Die Überlebensrate war bei 1-jährigen Weibchen niedriger (0,14) als bei Männchen (0,27); der Unterschied im Überleben blieb für ein Alter von > 1 Jahr erhalten (Weibchen 0,64 und Männchen 0,74). Die modellierte Überlebensrate (0,72) war bei den über Satellit verfolgten erwachsenen Fischadlern ähnlich. „Floaters “ waren selten; ihre Überlebensrate (0,70) war jedoch ähnlich wie die der Brütenden. Die mittlere Ausbreitungsentfernung nach dem Schlüpfen war bei den Weibchen signifikant größer (164 km) als bei den Männchen (47 km). Die Ausbreitung zum Brüten wurde für 5% der Brütenden ermittelt (mittlere Entfernung: 11,1 km). Die relativ hohe (im Modell) Sterblichkeit in der baltischen Population kann möglicherweise zum Teil mit der Konkurrenz in den Brutgebieten und Gefahren während des Zugs und der Überwinterung erklärt werden. Allerdings kann auch eine ständige Abwanderung zu der (im Modell) niedrigen Überlebensrate beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Anonymous (1999) Final report of a mission carried out in Tanzania from the 23 August to the 25 August 1999 for the objective of assessing the controls on pesticide residues in fish coming from Lake Victoria. European Commission, Directorate D, Food and Veterinary Office (mimeo)

  • Babushkin M, Kuznetsov A, del Mar DM (2019) Autumn migratory patterns of north-west Russian Ospreys Pandion haliaetus. Ardeola 66:119–128

    Article  Google Scholar 

  • Bai ML, Schmidt D (2012) Differential migration by age and sex in central European Ospreys Pandion haliaetus. J Ornithol 153:75–84

    Article  Google Scholar 

  • Berthold P (2001) Bird migration: a general survey. Oxford University Press, Oxford

    Google Scholar 

  • Bettinetti R, Quadroni S, Crosa G, Harper D, Dickie J, Kyalo M, Mavuti K, Galassi S (2011) A preliminary evaluation of the DDT contamination of sediments in lakes Natron and Bogoria (Eastern Rift Valley, Africa). Ambio 40:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierregaard RO, Poole AF, Washburn BE (2014) Ospreys (Pandion haliaetus) in the 21st century: populations, migration, management, and research priorities. J Raptor Res 48:301–308

    Article  Google Scholar 

  • BirdLife International (2019) Pandion haliaetus (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2019: e.T22694938A155519951 https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22694938A155519951.en. Accessed 26 Sept 2020

  • Brochet AL, van den Bossche W, Jbour S et al (2016) Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv Int 26:1–28

    Article  Google Scholar 

  • Bretagnolle V, Mougeot F, Thibault JC (2008) Density dependence in a recovering osprey population: demographic and behavioural processes. J Anim Ecol 77:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Clarke AL, Sæther BE, Røskaft E (1997) Sex biases in avian dispersal: a reappraisal. Oikos 79:429–438

    Article  Google Scholar 

  • Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562–573

    Article  PubMed  Google Scholar 

  • Cooch EG, White, GC (2016) Program MARK. A Gentle Introduction. 14th Edition. http://www.phidot.org/software/mark/docs/book/ Accessed in 6 Feb 2021

  • De Pascalis F, Panuccio M, Bacaro G, Monti F (2020) Shift in proximate causes of mortality for six large migratory raptors over a century. Biol Conserv 251:108793

    Article  Google Scholar 

  • Eriksson MO, Wallin K (1994) Survival and breeding success of the Osprey Pandion haliaetus in Sweden. Bird Conserv Int 4:263–277

    Article  Google Scholar 

  • Fletcher D (2012) Estimating overdispersion when fitting a generalized linear model to sparse data. Biometrika 99:230–237

    Article  Google Scholar 

  • Forsman D (2016) Flight identification of raptors of Europe. Bloomsbury Publishing, North Africa and the Middle East

    Google Scholar 

  • Francis CM, Saurola P (2002) Estimating age-specific survival rates of tawny owls—recaptures versus recoveries. J Appl Stat 29:637–647

    Article  Google Scholar 

  • Gimenez O, Lebreton JD, Choquet R, Pradel R (2017) R2ucare: an R package to perform goodness-of-fit tests for capture-recapture models. bioRxiv. https://doi.org/10.1101/192468

    Article  Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21

    Article  Google Scholar 

  • Grove RA, Henny CJ, Kaiser JL (2009) Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries. J Toxicol Environ Health Part B 12:25–44

    Article  CAS  Google Scholar 

  • Hagan JM (1986) Temporal patterns in pre-fledgling survival and brood reduction in an osprey colony. Condor 88:200–205

    Article  Google Scholar 

  • Hario M, Hirvi JP, Hollmen T, Rudbäck E (2004) Organochlorine concentrations in diseased vs. healthy gull chicks from the northern Baltic. Environ Poll 127:411–423

    Article  CAS  Google Scholar 

  • Henny CJ, Wight HM (1969) An endangered Osprey population: estimates of mortality and production. Auk 86:188–198

    Article  Google Scholar 

  • Hijmans RJ, Williams E, Vennes C (2015) Geosphere: spherical trigonometry. R-project. org/package= geosphere Accessed 26 Sept 2020

  • Johnson DR, Melquist WE (1991) Wintering distribution and dispersal of Northern Idaho and Eastern Washington Ospreys. J Field Ornithol 62:517–520

    Google Scholar 

  • Kalvāns A (2013) Research and conservation of ospreys in Latvia. Birds of Prey and Owls in Zoos and Breeding Stations 22:29–39

  • Kirss M, Väli Ü (2018) Foraging habitats of the osprey: an analysis of opportunistic records from citizen science. Hirundo 31:39–51

    Google Scholar 

  • Klaassen RH, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo KM, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184

    Article  PubMed  Google Scholar 

  • Kotkaklubi, 5DVision (2020) Birdmap. http://birdmap.5dvision.ee/EN/. Accessed 2 Oct 2020

  • Laake JL (2013) RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. https://CRAN.R-project.org/package=RMark Accessed in 1 Feb 2021

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lõhmus A (2001a) Habitat selection in a recovering Osprey Pandion haliaetus population. Ibis 143:651–657

    Article  Google Scholar 

  • Lõhmus A (2001b) Ospreys Pandion haliaetus in Estonia: a historical perspective. Vogelwelt 122:167–172

    Google Scholar 

  • Martell MS, Henny CJ, Nye PE, Solensky MJ (2001) Fall migration routes, timing, and wintering sites of North American Ospreys as determined by satellite telemetry. Condor 103:715–724

    Article  Google Scholar 

  • Martell MS, Englund JV, Tordoff HB (2002) An urban Osprey population established by translocation. J Raptor Res 36:91–96

    Google Scholar 

  • Monti F, Dominici JM, Choquet R, Duriez O, Sammuri G, Sforzi A (2014) The Osprey reintroduction in Central Italy: dispersal, survival and first breeding data. Bird Study 61:465–473

    Article  Google Scholar 

  • Morandini V, Muriel R, Newton I, Ferrer M (2019) Skewed sex ratios in a newly established osprey population. J Ornithol 160:1025–1033

    Article  Google Scholar 

  • Newton I (1979) Population ecology of raptors. T & AD Poyser, Berkhamsted

    Google Scholar 

  • Newton I, McGrady MJ, Oli MK (2016) A review of survival estimates for raptors and owls. Ibis 158:227–248

    Article  Google Scholar 

  • Österlöf S (1977) Migration, wintering areas, and site tenacity of the European Osprey Pandion h. haliaetus (L.). Ornis Scand 8:61–78

    Article  Google Scholar 

  • Penteriani V, Ferrer M, Delgado MDM (2011) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14:233–241

    Article  Google Scholar 

  • Perrins CM, Lebreton JD, Hirons GJM (eds) (1991) Bird population studies. Relevance to conservation and management. Oxford University Press, Oxford

    Google Scholar 

  • Petersen KL, Hogg S, Englund JV (2020) Nest-site selection and nesting success in a restored population of Ospreys (Pandion haliaetus) in the Minneapolis-St. Paul, Minnesota (USA) area. J Raptor Res 54:245–254

    Article  Google Scholar 

  • Poole AF (1989) Ospreys, a natural and unnatural history. Cambridge University Press, Cambridge

    Google Scholar 

  • Priednieks J, Strazds M, Strazds A, Petriņš A (1989) Latvian breeding bird atlas 1980–1984. Zinātne, Rīga

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 01 Oct 2020

  • Ryttman H (1994) Estimates of survival and population development of the Osprey Pandion haliaetus, Common Buzzard Buteo buteo, and Sparrowhawk Accipiter nisus in Sweden. Ornis Svec 4:159–172

    Google Scholar 

  • Sæther B, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Article  Google Scholar 

  • Sandercock BK (2006) Estimation of demographic parameters from live-encounter data: a summary review. J Wildl Manag 70:1504–1520

    Article  Google Scholar 

  • Sandercock BK (2020) Mark-recapture models for estimation of demographic parameters. In: Murray DL, Sandercock BK (eds) Population ecology in practice. Hoboken, Wiley-Blackwell, pp 157–190

    Google Scholar 

  • Saurola P (2005) Monitoring and conservation of Finnish ospreys Pandion haliaetus in 1971–2005. In: Status of raptor populations in eastern Fennoscandia. Proceedings of the Workshop, Kostomuksha, pp 8–10.

  • Saurola P (2013) Osprey. In: Saurola P, Valkama J, Velmala W (eds) The Finnish bird ringing atlas. Helsinki, Finnish Museum of Natural History and Ministry of Environment

    Google Scholar 

  • Schmidt D, Wahl R (2001) Horst- und Partnertreue beringter Fischadler Pandion haliaetus in Ostdeutschland und Zentralfrankreich. Vogelwelt 122:129–140

    Google Scholar 

  • Schmidt D, Herold S, Lange H, Reusse P (2006) Zur Philopatrie des Fischadlers Pandion haliaetus in Deutschland—Zwischenergebnisse des Farbringprogramms 1995–2004. Populationsökol Greifvogel Eulenarten 5:133–142

    Google Scholar 

  • Schmidt-Rothmund D, Dennis R, Saurola P (2014) The Osprey in the western palearctic: breeding population size and trends in the early 21st century. J Raptor Res 48:375–386

    Article  Google Scholar 

  • Spitzer PR, Poole AF, Scheibel M (1983) Initial population recovery of breeding ospreys in the region between New York City and Boston. Biology and management of bald eagles and ospreys. Harpell Press, Quebec, pp 231–241

    Google Scholar 

  • Strazds M, Bauer HG, Väli Ü, Kukāre A, Bartkevičs V (2015) Recent impact of DDT contamination on Black Stork eggs. J Ornithol 156:187–198

    Article  Google Scholar 

  • Väli Ü, Bergmanis U (2017) Apparent survival rates of adult Lesser Spotted Eagle Clanga pomarina estimated by GPS-tracking, colour rings and wing-tags. Bird Study 64:104–107

    Article  Google Scholar 

  • Väli Ü, Sellis U (2016) Migration patterns of the Osprey Pandion haliaetus on the Eastern European-East African flyway. Ostrich 87:23–28

    Article  Google Scholar 

  • Väli Ü, Männik R, Nellis R, Sein G, Sellis U (2011) Monitoring Estonian eagles: examples of estimating status and numbers of rare species. Year-Book of the Estonian Naturalists’ Society 86:92–106

    Google Scholar 

  • Voigt Englund J, Greene VL (2008) Two-year-old nesting behavior and extra-pair copulation in a reintroduced Osprey population. J Raptor Res 42:119–124

    Article  Google Scholar 

  • Wahl R, Barbraud C (2014) The demography of a newly established Osprey Pandion haliaetus population in France. Ibis 156:84–96

    Article  Google Scholar 

  • Walters JR (2000) Dispersal behavior: an ornithological frontier. Condor 102:479–481

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(S1):S120–S139

    Article  Google Scholar 

Download references

Acknowledgements

We thank everyone who participated in the monitoring of Ospreys in Estonia and Latvia, and in the ringing and photographing of adult birds. Data for recoveries and re-sightings in other countries were provided by Estonian and Latvian bird ringing centres. Urmas Sellis led the GPS-tracking of Ospreys and made migration data available to the public via an online migration map (http://birdmap.5dvision.ee/). Brett Sandercock gave useful advice during data analysis; Flavio Monti and two anonymous reviewers provided valuable comments on earlier drafts of the manuscript. The monitoring of the Estonian Ospreys was financed by the Estonian Environment Agency and its predecessors. The data analysis and compilation of the paper were supported by the Environmental Investments Centre (project no. 3-2_7/10874-4/2020). The study was in compliance with the current laws of Estonia and Latvia. Permission for visiting nest sites and ringing was issued by the Estonian Environment Agency and Latvian Nature Conservation Agency.

Funding

Monitoring of the Estonian Ospreys was financed by the Estonian Environment Agency and its predecessors. The data analysis and compilation of the paper were supported by the Environmental Investments Centre (project no. 3-2_7/10874-4/2020).

Author information

Authors and Affiliations

Authors

Contributions

ÜV designed the study, conducted data analysis and drafted the manuscript; AK and JT collected and compiled the data; all authors revised and finalised the manuscript.

Corresponding author

Correspondence to Ülo Väli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by O. Krüger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Väli, Ü., Kalvāns, A. & Tuvi, J. Apparent survival and dispersal in a recovered Osprey population: effects of age, sex and social status. J Ornithol 162, 1025–1034 (2021). https://doi.org/10.1007/s10336-021-01908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-021-01908-7

Keywords

Navigation