Skip to main content

Advertisement

Log in

Low food abundance prior to breeding results in female-biased sex allocation in Tengmalm’s Owl (Aegolius funerus)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Parents can enhance their fitness by favouring that sex whose reproductive value is expected to be highest. In species in which females are the larger sex with potentially greater fitness returns, one can assume that parents should bias their investment toward daughters to increase their daughters’ reproductive value (i.e. age-specific expectation of all present and future offspring) and, thereby, indirectly increase their own inclusive fitness. In the study reported here, we investigated sex allocation in Tengmalm’s Owl (Aegolius funereus), a bird species with a pronounced female-biased sexual size dimorphism in which females are larger than the males. Assuming that parental investment would have the greatest effect on the fitness of larger daughters, we hypothesized that daughters should be favoured in good conditions and sons in poor conditions. Our study was conducted in the Czech Republic over seven breeding seasons (2006–2012). In total, 205 nestlings from 52 nests were sexed. The mean nestling sex ratio, 48.5 ± 4.6% (± standard error), did not depart from parity, and we did not identify any variable to be related to it. However, we did find that at fledging (1) the body mass of female offspring was approximately 8% heavier than that of male offspring, and (2) surprisingly, the body mass of female offspring tended to increase with decreasing prey abundance in the autumn, i.e. prior to breeding. One possible explanation of this “carry-over effect” is that parents increased their investment toward daughters to maximize their daughters’ survival and reproductive value in a poor environment. This explanation could be supported by the sex-specific effect of the adult’s condition on reproductive success. Whereas the number of fledglings tended to increase with increasing age of the mother, it also increased with decreasing wing length of the father. These results indicate that in the Tengmalm’s Owl large body size may be mainly important for female reproduction, while male reproductive success is independent of body size or is even associated with small body size. To the best of our knowledge, our study is the first to have found such a positive, relatively long-lasting, sex-specific carry-over effect of pre-breeding prey abundance on the condition of female offspring in a bird of prey species.

Zusammenfassung

Geringes Nahrungsvorkommen vor der Brutzeit führt beim Raufußkauz (Aegolius 52 funereus) zu einer Verschiebung der Geschlechterverteilung zugunsten der Weibchen

Eltern können ihre Fitness verbessern, indem sie bei ihren Nachkommen das Geschlecht bevorzugen, welches für die Reproduktion am wertvollsten ist. Bei Arten, bei denen Weibchen das größere Geschlecht mit potentiell größeren Fitnesserträgen darstellen, kann man davon ausgehen, dass die Eltern mehr in ihre Töchter investieren sollten, um den Reproduktionserfolg der Töchter (d.h. altersspezifische Erwartung hinsichtlich aller derzeitigen und zukünftigen Nachkommen) und somit indirekt auch ihre eigene Fitness zu erhöhen. In dieser Studie haben wir die Geschlechterverteilung beim Raufußkauz (Aegolius funereus) untersucht, eine Art mit einem ausgeprägten Geschlechterdimorphismus mit größeren Weibchen. Ausgehend von der Annahme, dass die elterliche Investition den größten Effekt auf die Fitness der größeren Töchter hat, haben wir die Hypothese aufgestellt, dass Töchter während guten Bedingungen und Söhne während schlechten Bedingungen bevorzugt werden sollten. Unsere Studie wurde in der Tschechischen Republik über sieben Brutphasen (2006–2012) durchgeführt. Insgesamt wurde das Geschlecht von 205 Nestlingen aus 52 Nestern bestimmt. Das mittlere Geschlechterverhältnis der Nestlinge von 48.5 ± 4.6% (± SE) war nicht unterschiedlich zu einem ausgeglichenen Geschlechterverhältnis und wir konnten keinen Parameter finden, der dazu in Beziehung steht. Jedoch haben wir herausgefunden, dass zum Zeitpunkt des Flüggewerdens (1) weibliche Nachkommen um 8% schwerer als männliche Nachkommen waren und (2) überaschenderweise die Körpermasse der weiblichen Nachkommen mit einem kleiner werdenden Nahrungsvorkommen im vorherigen Herbst, d.h. vor der Brutzeit, zunahm. Ein Grund für diesen „Carry-over-Effekt“ könnte sein, dass die Eltern ihre Investition zugunsten der Töchter erhöht haben, um die Überlebensrate und den Reproduktionserfolg der Töchter bei schlechten Umweltbedingungen zu maximieren. Diese Erklärung konnte durch einen geschlechterspezifischen Einfluss der Kondition der Altvögel auf den Reproduktionserfolg unterstützt werden. Während die Anzahl an flüggen Jungvögeln tendenziell mit dem zunehmenden Alter der Mutter anstieg, erhöhte sich diese ebenfalls mit der abnehmenden Flügellänge der Väter. Diese Ergebnisse lassen vermuten, dass beim Raufußkauz große Körpergrößen hauptsächlich wichtig für die Reproduktion der Weibchen sein könnten, während der Reproduktionserfolg der Männchen körpergrößenunabhängig oder mit einer geringen Körpergröße assoziiert ist. Nach bestem Wissen ist unsere Studie die erste, die einen positiven, relativ langanhaltenden, geschlechterspezifischen Carry-over-Effekt des vorbrutzeitlichen Nahrungsvorkommens auf die Konditionen der weiblichen Nachkommen bei einer Greifvogelart gefunden hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DJ, Budde C, Apanius V, Gomez JEM, Bird DM, Weathers WW (1993) Prey size influences female competitive dominance in nestling American kestrels (Falco sparverius). Ecology 74:367–376

    Google Scholar 

  • Appleby BM, Petty SJ, Blakey JK, Rainey P, MacDonald DW (1997) Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco)? Proc R Soc Lond B 264:1111–1116

    Google Scholar 

  • Boutin S, Larsen KW, Berteaux D (2000) Anticipatory parental care: acquiring resources for offspring prior to conception. Proc R Soc Lond B 267:2081–2085

    CAS  Google Scholar 

  • Boutin S, Wauters LA, McAdam AG, Humphries MM, Tosi G, Dhondt AA (2006) Anticipatory reproduction and population growth in seed predators. Science 314:1928–1930

    CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Google Scholar 

  • Chakarov N, Pauli M, Mueller AK, Potiek A, Grunkorn T et al (2015) Territory quality and plumage morph predict offspring sex ratio variation in a raptor. PLoS One 10:e0138295. https://doi.org/10.1371/journal.pone.0138295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Clutton-Brock TH, Iason GR (1986) Sex-ratio variation in mammals. Q Rev Biol 61:339–374

    CAS  PubMed  Google Scholar 

  • Clutton-Brock TH, Albon SD, Guinness FE (1985) Parental investment and sex-differences in juvenile mortality in birds and mammals. Nature 313:131–133

    Google Scholar 

  • Corvidae EL, Bierregaard RO, Peters SE (2006) Comparison of wing morphology in three birds of prey: correlations with differences in flight behavior. J Morphol 267:612–622

    PubMed  Google Scholar 

  • Dantzer B, Newman AEM, Boonstra R et al (2013) Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340:1215–1217

    CAS  PubMed  Google Scholar 

  • Desfor KB, Boomsma JJ, Sunde P (2007) Tawny owls Strix aluco with reliable food supply produce male-biased broods. Ibis 149:98–105

    Google Scholar 

  • Dijkstra C, Daan S, Buker JB (1990) Adaptive seasonal-variation in the sex-ratio of kestrel broods. Funct Ecol 4:143–147

    Google Scholar 

  • Dušek A, Bartoš L, Sedláček F (2011) Mixed sex allocation strategies in a polytocous mammal, the house mouse (Mus musculus). Behav Ecol Sociobiol 65:2209–2217

    Google Scholar 

  • Dušek A, Bartoš L, Sedláček F (2017) Pre-breeding food restriction promotes the optimization of parental investment in house mice, Mus musculus. PLoS One 12:e0173985. https://doi.org/10.1371/journal.pone.0173985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldegard K, Sonerud GA (2010) Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl. Behav Ecol Sociobiol 64:815–826

    Google Scholar 

  • Eldegard K, Sonerud GA (2012) Sex roles during post-fledging care in birds: female Tengmalm’s owls contribute little to food provisioning. J Ornithol 153:385–398

    Google Scholar 

  • Ferguson-Lees J, Christie DA (2001) Raptors of the world. Christopher Helm, London

    Google Scholar 

  • Ferrero JJ, Grande JM, Negro JJ (2003) Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus). J Raptor Res 37:1–7

    Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection, 2nd edn. Dover, New York

    Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Google Scholar 

  • Genovart M, Surroca M, Martinez-Abrain A, Jimenez J (2008) Parity in fledging sex ratios in a dimorphic raptor, Montagu’s harrier Circus pygargus. Zool Stud 47:11–16

    Google Scholar 

  • Griffiths R (1992) Sex-biased mortality in the lesser black-backed gull Larus fuscus during the nestling stage. Ibis 134:237–244

    Google Scholar 

  • Hakkarainen H, Korpimäki E (1991) Reversed sexual size dimorphism in Tengmalm’s owl: is small male size adaptive? Oikos 61:337–346

    Google Scholar 

  • Hakkarainen H, Korpimäki E (1993) The effect of female body-size on clutch volume of Tengmalm’s owls Aegolius funereus in varying food conditions. Ornis Fenn 70:189–195

    Google Scholar 

  • Hakkarainen H, Korpimäki E (1998) Why do territorial male Tengmalm’s owls fail to obtain a mate? Oecologia 114:578–582

    PubMed  Google Scholar 

  • Hakkarainen H, Huhta E, Lahti K et al (1996) A test of male mating and hunting success in the kestrel: the advantages of smallness? Behav Ecol Sociobiol 39:375–380

    Google Scholar 

  • Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 60:353–367

    Google Scholar 

  • Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18

    PubMed  Google Scholar 

  • Hasselquist D, Kempenaers B (2002) Parental care and adaptive brood sex ratio manipulation in birds. Philos Trans R Soc Lond B Biol Sci 357:363–372

    PubMed  PubMed Central  Google Scholar 

  • Hipkiss T (2002) Sexual size dimorphism in Tengmalm’s owl (Aegolius funereus) on autumn migration. J Zool 257:281–285

    Google Scholar 

  • Hipkiss T, Hörnfeldt B (2004) High interannual variation in the hatching sex ratio of Tengmalm’s owl broods during a vole cycle. Popul Ecol 46:263–268

    Google Scholar 

  • Hipkiss T, Hörnfeldt B, Eklund U, Berlin S (2002) Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl nestlings. J Anim Ecol 71:693–699

    Google Scholar 

  • Hirshfield MF, Tinkle DW (1975) Natural-selection and evolution of reproductive effort. Proc Natl Acad Sci USA 72:2227–2231

    CAS  PubMed  Google Scholar 

  • Hörnfeldt B, Carlsson BG, Nordstrom A (1988) Molt of primaries and age-determination in Tengmalm’s owl (Aegolius funereus). Auk 105:783–789

    Google Scholar 

  • Huitu O, Norrdahl K, Korpimäki E (2003) Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia 135:209–220

    PubMed  Google Scholar 

  • Kekkonen J, Kolunen H, Pietiäinen H, Karell P, Brommer JE (2008) Tawny owl reproduction and offspring sex ratios under variable food conditions. J Ornithol 149:59–66

    Google Scholar 

  • Kloubec B, Vacík R (1990) Náčrt potravní ekologie sýce rousného (Aegolius funereus) v Československu. Tichodroma 3:103–125

    Google Scholar 

  • Kölliker M, Heeb P, Werner I, Mateman AC, Lessells CM, Richner H (1999) Offspring sex ratio is related to male body size in the great tit (Parus major). Behav Ecol 10:68–72

    Google Scholar 

  • König C, Weick F (2008) Owls of the world, 2nd edn. Yale University Press, New Haven, London

    Google Scholar 

  • Korpimäki E (1981) On the ecology and biology of Tengmalm’s owl (Aegolius funereus) in southern Ostrobothnia and Soumenselkä, western Finland. Acta Univ Oul A 118 Biol 13:1–84

    Google Scholar 

  • Korpimäki E (1989) Mating system and mate choice of Tengmalm’s owls Aegolius funereus. Ibis 131:41–50

    Google Scholar 

  • Korpimäki E (1990) Body mass of breeding Tengmalm’s owls Aegolius funereus: seasonal, between-year, site and age-related variation. Ornis Scand 21:169–178

    Google Scholar 

  • Korpimäki E (1991) Poor reproductive success of polygynously mated female Tengmalm’s owls: are better options available. Anim Behav 41:37–47

    Google Scholar 

  • Korpimäki E, Hakkarainen H (2012) The Boreal owl: ecology, behaviour and conservation of a forest-dwelling predator. Cambridge University Press, Cambridge

    Google Scholar 

  • Korpimäki E, Lagerström M (1988) Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J Anim Ecol 57:433–441

    Google Scholar 

  • Korpimäki E, Lagerström M, Saurola P (1987) Field evidence for nomadism in Tengmalm’s owl Aegolius funereus. Ornis Scand 18:1–4

    Google Scholar 

  • Korpimäki E, May CA, Parkin DT, Wetton JH, Wiehn J (2000) Environmental- and parental condition-related variation in sex ratio of kestrel broods. J Avian Biol 31:128–134

    Google Scholar 

  • Korpimäki E, Salo P, Valkama J (2011) Sequential polyandry by brood desertion increases female fitness in a bird with obligatory bi-parental care. Behav Ecol Sociobiol 65:1093–1102

    Google Scholar 

  • Kouba M, Bartoš L, Šťastný K (2013) Differential movement patterns of juvenile Tengmalm’s Owls (Aegolius funereus) during the post-fledging dependence period in 2 years with contrasting prey abundance. PLoS One 8(7):e67034. https://doi.org/10.1371/journal.pone.0067034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouba M, Bartoš L, Šťastný K (2014) Factors affecting vocalization in Tengmalm’s Owl (Aegolius funereus) fledglings during post-fledging dependence period: scramble competition or honest signalling of need? PLoS One 9(4):e95594

    PubMed  PubMed Central  Google Scholar 

  • Kouba M, Bartoš L, Korpimäki E, Zárybnická M (2015) Factors affecting the duration of nestling period and fledging order in Tengmalm’s Owl (Aegolius funereus): effect of wing length and hatching sequence. PLoS One 10(3):e0121641. https://doi.org/10.1371/journal.pone.0095594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouba M, Bartoš L, Tomášek V, Popelková A, Šťastný K, Zárybnická M (2017) Home range size of Tengmalm’s Owl during breeding in Central Europe is determined by prey abundance. PLoS One 12(5):e0177314. https://doi.org/10.1371/journal.pone.0177314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krackow S (1995) Potential mechanisms for sex-ratio adjustment in mammals and birds. Biol Rev Cambridge Philos Soc 70:225–241.

    CAS  PubMed  Google Scholar 

  • Laaksonen T, Lyytinen S, Korpimäki E (2004) Sex-specific recruitment and brood sex ratios of Eurasian kestrels in a seasonally and annually fluctuating northern environment. Evol Ecol 18:215–230

    Google Scholar 

  • Lambin X, Elston DA, Petty SJ, MacKinnon JL (1998) Spatial asynchrony and periodic travelling waves in cyclic populations of field voles. Proc R Soc B-Biol Sci 265:1491–1496

    CAS  Google Scholar 

  • Leimar O (1996) Life-history analysis of the Trivers and Willard sex-ratio problem. Behav Ecol 7:316–325

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Shabenberger O (2006) SAS for mixed models. SAS Institute Inc, Cary

    Google Scholar 

  • Love OP, Chin EH, Wynne-Edwards KE, Williams TD (2005) Stress hormones: a link between maternal condition and sex-biased reproductive investment. Am Nat 166:751–766

    PubMed  Google Scholar 

  • Mueller HC, Berger DD, Allez G (1981) Age and sex-differences in wing loading and other aerodynamic characteristics of sharp-shinned hawks. Wilson Bull 93:491–499

    Google Scholar 

  • O’Connor CM, Norris DR, Crossin GT, Cooke SJ (2014) Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 5:1–11

    Google Scholar 

  • Penteriani V, Rutz C, Kenward R (2013) Hunting behaviour and breeding performance of northern goshawks Accipiter gentilis, in relation to resource availability, sex, age and morphology. Naturwissenschaften 100:935–942

    CAS  PubMed  Google Scholar 

  • Radford AN, Blakey JK (2000) Is variation in brood sex ratios adaptive in the great tit (Parus major)? Behav Ecol 11:294–298

    Google Scholar 

  • Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108:783–790

    Google Scholar 

  • Schwerdtfeger O, Wink M (2014) Lack of correlation between sex ratio and food supply or other biotic variables in nestlings of Tengmalm’s Owl Aegolius funereus. J Ornithol 155:497–505

    Google Scholar 

  • Sergio F (2003) From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim Behav 66:1109–1117

    Google Scholar 

  • Sergio F, Blas J, Forero MG, Donázar JA, Hiraldo F (2007) Size-related advantages for reproduction in a slightly dimorphic raptor: opposite trends between the sexes. Ethology 113:1141–1150

    Google Scholar 

  • Šindelář J, Kubizňák P, Zárybnická M (2015) Sequential polyandry in female Tengmalm’s owl (Aegolius funereus) during a poor rodent year. Folia Zool 64:123–128

    Google Scholar 

  • Solheim R (1983) Bigyny and biandry in the Tengmalm’s owl Aegolius funereus. Ornis Scand 14:51–57

    Google Scholar 

  • Sonerud GA (1985) Nest hole shift in Tengmalm’s owl Aegolius funereus as defence against nest predation involving long-term memory in the predator. J Anim Ecol 54:179–192

    Google Scholar 

  • Sundell J, Huitu O, Henttonen H et al (2004) Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J Anim Ecol 73:167–178

    Google Scholar 

  • Tao J, Littel R, Patetta M, Truxillo C, Wolfinger R (2002) Mixed model analyses using the SAS system course notes. SAS Institute Inc, Cary

    Google Scholar 

  • Tella JL, Donazar JA, Negro JJ, Hiraldo F (1996) Seasonal and interannual variations in the sex-ratio of lesser kestrel Falco naumanni broods. Ibis 138:342–345

    Google Scholar 

  • Trivers RL, Willard DE (1973) Natural-selection of parental ability to vary sex-ratio of offspring. Science 179:90–92

    CAS  PubMed  Google Scholar 

  • Valkama J, Korpimäki E, Holm A, Hakkarainen H (2002) Hatching asynchrony and brood reduction in Tengmalm’s owl Aegolius funereus: the role of temporal and spatial variation in food abundance. Oecologia 133:334–341

    PubMed  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Wiebe KL, Bortolotti GR (1992) Facultative sex-ratio manipulation in American kestrels. Behav Ecol Sociobiol 30:379–386

    Google Scholar 

  • Zárybnická M (2009) Parental investment of female Tengmalm’s owls Aegolius funereus: correlation with varying food abundance and reproductive success. Acta Ornithol 44:81–88

    Google Scholar 

  • Zárybnická M, Sedláček O, Korpimäki E (2009) Do Tengmalm’s owls alter parental feeding effort under varying conditions of main prey availability? J Ornithol 150:231–237

    Google Scholar 

  • Zárybnická M, Riegert J, Šťastný K (2011) Diet composition in the Tengmalm’s owl Aegolius funereus: a comparison of camera surveillance and pellet analysis. Ornis Fenn 88:147–153

    Google Scholar 

  • Zárybnická M, Riegert J, Šťastný K (2013) The role of Apodemus mice and Microtus voles in the diet of the Tengmalm’s owl in Central Europe. Popul Ecol 55:353–361

    Google Scholar 

  • Zárybnická M, Riegert J, Brejšková L et al (2015a) Factors affecting growth of Tengmalm’s owl (Aegolius funereus) nestlings: prey abundance, sex and hatching order. PLoS One 10:e0138177. https://doi.org/10.1371/journal.pone.0138177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zárybnická M, Riegert J, Kouba M (2015b) Indirect food web interactions affect predation of Tengmalm’s owls Aegolius funereus nests by Pine Martens Martes martes according to the alternative prey hypothesis. Ibis 157:459–467

    Google Scholar 

  • Zárybnická M, Sedláček O, Salo P, Šťastný K, Korpimäki E (2015c) Reproductive responses of temperate and boreal Tengmalm’s owl Aegolius funereus populations to spatial and temporal variation in prey availability. Ibis 157:369–383

    Google Scholar 

  • Zijlstra M, Daan S, Bruinenbergrinsma J (1992) Seasonal-variation in the sex-ratio of marsh harrier Circus aeruginosus broods. Funct Ecol 6:553–559

    Google Scholar 

Download references

Acknowledgements

We are grateful to Vít Dvořák for his help in the field, to Jaroslav Němec for his technical assistance and to Lucie Brejšková for DNA analysis and sexing the nestlings. We also thank NK Translators Inc. for improving English. AD and LB were supported by the Ministry of Agriculture of the Czech Republic, institutional support MZE-RO0718. All the experiments comply with the current laws of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kouba.

Additional information

Communicated by O. Krüger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouba, M., Dušek, A., Bartoš, L. et al. Low food abundance prior to breeding results in female-biased sex allocation in Tengmalm’s Owl (Aegolius funerus). J Ornithol 161, 159–170 (2020). https://doi.org/10.1007/s10336-019-01707-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01707-1

Keywords

Navigation