Skip to main content
Log in

Trophic consequences of mast seeding for avian and mammalian seed and non-seed consumers in European temperate forests

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Resource pulses are wide-ranging, influential ecosystem processes with effects permeating throughout the food web, sometimes over several years. In temperate forests, resource pulses may be triggered by mast seeding of one or several tree species, providing a key food source to a multitude of species. However, direct and indirect consequences of mast seeding for various seed and non-seed consumers, and interactions among them, are often poorly understood. Based on a 16-year data set from Germany, we evaluated several hypotheses concerning the relationships between (1) mast seeding and seed consumers, (2) seed and non-seed consumers, and (3) seed or non-seed consumers and extrinsic factors other than mast seeding. Abundances of Eurasian Jays Garrulus glandarius correlated negatively, but abundances of voles positively, with mast seeding of oak in the previous fall, while the abundances of Great Tits Parus major did not appear to be linked to mast seeding. The abundance of non-seed consumers, such as Wood Warblers Phylloscopus sibilatrix, but not Chiffchaffs Phylloscopus collybita, appeared to be linked indirectly to mast seeding of oak via voles. Specifically, Wood Warbler abundance negatively correlated with abundances of voles. Extrinsic factors other than mast seeding appeared to be unimportant. This study shows how the set of factors affecting a species at a large spatial scale may vary from the set of factors acting at smaller spatial scales, as obtained from the literature. Lastly, we illustrate how several taxa at various trophic levels of a temperate forest ecosystem in Central Europe are linked via resource pulses. Assessing ecological processes revolving around seed-based resource pulses is pivotal to understanding how changing mast seeding dynamics may alter an ecosystem.

Zusammenfassung

Trophische Konsequenzen der Samenmast für samenfressende und nicht-samenfressende Vögel und Säugetiere in gemäßigten Wäldern Europas.

Ressourcenschübe sind weitreichende, bedeutende Ökosystemprozesse und können Nahrungsnetze über mehrere Jahre beeinflussen. In gemäßigten Wäldern ist die in unregelmäßigen Abständen auftretende Samenmast verschiedener Baumarten ein häufiger und wichtiger Ressourcenschub und stellt in kurzer Zeit eine große Menge an Nahrung für verschiedenste Organismen bereit. Die direkten und indirekten Konsequenzen der Samenmast für Samenfresser und Nicht-Samenfresser sind jedoch schlecht untersucht. Anhand eines 16 Jahre umfassenden Datensatzes aus Deutschland testeten wir verschiedene Hypothesen bezüglich der Beziehungen zwischen (1) Samenmast und Samenfressern, (2) Samenfressern und Nicht-Samenfressern sowie (3) Samenfressern und Nicht-Samenfressern zu weiteren extrinsischen Faktoren. Die Abundanzen von Eichelhäher Garrulus glandarius und Wühlmäusen korrelierten negativ beziehungsweise positiv mit der Eichelmast im vorangehenden Herbst. Die Abundanz der Kohlmeise Parus major korrelierte hingegen nicht mit der Samenmast. Der Waldlaubsänger Phylloscopus sibilatrix war über die Wühlmäuse indirekt mit der Eichelmast verbunden, indem die Häufigkeit dieses Nicht-Samenfressers negativ mit jener von Wühlmäusen korrelierte. Für den Zilpzalp P. collybita, ein weiterer Nicht-Samenfresser, fanden wir keine solchen Beziehungen. Andere extrinsische Faktoren wie z.B. die Winterwitterung schienen in Bezug auf die Bestände der hier analysierten Arten nicht wichtig zu sein. Unsere Studie legt nahe, dass die Bestände einer Art großräumig von anderen Faktoren beeinflusst werden können als aufgrund von bisherigen kleinräumigen Studien bekannt war. Wir zeigen auch, wie mehrere Taxa auf verschiedenen trophischen Ebenen eines europäischen Waldökosystems durch Ressourcenschübe miteinander in Beziehung stehen. Deshalb ist es wichtig, die Auswirkungen der Samenmast zu evaluieren, um letztendlich zu verstehen, wie sich ändernde Samenmastdynamik auf das Ökosystem Wald auswirken kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascoli D, Maringer J, Hacket-Pain A, Conedera M, Drobyshev I, Motta R, Cirolli M, Kantorowicz W, Zang C, Schueler S, Croisé L, Piussi P, Berretti R, Palaghianu C, Westergren M, Lageard JGA, Burkart A, Gehrig Bichsel R, Thomas PA, Beudert B, Övergaard R, Vacchiano G (2017) Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology 98:1473. https://doi.org/10.1002/ecy.1785

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cade BS (2015) Model averaging and muddled multimodel inferences. Ecology 96:2370–2382

    Article  Google Scholar 

  • Chamberlain DE, Vickery JA, Glue DE, Robinson RA, Conway GJ, Woodburn RJW, Cannon AR (2005) Annual and seasonal trends in the use of garden feeders by birds in winter. Ibis 147:563–575

    Article  Google Scholar 

  • Clotfelter ED, Pedersen AB, Cranford JA, Ram N, Snajdr EA, Nolan V Jr, Ketterson ED (2007) Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia 154:493–503. https://doi.org/10.1007/s00442-007-0859-z

    Article  PubMed  Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Ergon T, Speakman JR, Scantlebury M, Cavanagh R, Lambin X (2004) Optimal body size and energy expenditure during winter: why are voles smaller in declining populations? Am Nat 163:442–457. https://doi.org/10.1086/381940

    Article  PubMed  Google Scholar 

  • Flade M, Schwarz J (2004) Ergebnisse des DDA-Monitoringprogramms. Teil II. Bestandesentwicklung von Waldvögeln in Deutschland 1989-2003. Vogelwelt 125:177–213

    Google Scholar 

  • Gatter W (2000) Vogelzug und Vogelbestände in Mitteleuropa. Aula, Wiebelsheim

    Google Scholar 

  • Gelman A, Su Y-S (2016) arm: data analysis using regression and multilevel/hierarchical models. R package version 1.9-3

  • Glutz von Blotzheim UN, Bauer KM, Bezzel E (1991) Handbuch der Vögel Mitteleuropas, 3rd edn. Aula, Wiesbaden

    Google Scholar 

  • Grendelmeier A, Arlettaz R, Pasinelli G (2018) Numerical response of mammalian carnivores to rodents affects bird reproduction in temperate forests: a case of apparent competition? Ecol Evol. https://doi.org/10.1002/ece3.4608

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansson L, Henttonen H (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover. Oecologia 67:394–402

    Article  PubMed  Google Scholar 

  • Jaksić FM, Silva SI, Meserve PL, Gutiérrez JR (1997) A long-term study of vertebrate predator responses to an El Nino (ENSO) disturbance in western South America. Oikos 78:341–354

    Article  Google Scholar 

  • Jȩdrzejewska B, Jȩdrzejewski W (1998) Predation in vertebrate communities: the Białowieża primeval forest as a case study. Ecological studies, vol 135. Springer, Berlin

    Book  Google Scholar 

  • Jensen TS (1982) Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia 54:184–192. https://doi.org/10.1007/BF00378391

    Article  PubMed  Google Scholar 

  • Kirkpatrick C, Conway CJ (2010) Nest predators of ground-nesting birds in montane forest of the Santa Catalina Mountains, Arizona. Wilson J Ornithol 122:614–617. https://doi.org/10.1676/09-166.1

    Article  Google Scholar 

  • Koenig WD, Knops JMH (1998) Scale of mast-seeding and tree-ring growth. Nature 396:225–226

    Article  CAS  Google Scholar 

  • Konnert M, Schneck D, Zollner A (2014) Blühen und Fruktifizieren unserer Waldbäume in den letzten 60 Jahren. LWF Wissen 74:37–45

    Google Scholar 

  • Korslund L, Steen H (2006) Small rodent winter survival: snow conditions limit access to food resources. J Anim Ecol 75:156–166. https://doi.org/10.1111/j.1365-2656.2005.01031.x

    Article  PubMed  Google Scholar 

  • Lalonde RG, Roitberg BD (1992) On the evolution of masting behavior in trees: predation or weather? Am Nat 139:1293–1304

    Article  Google Scholar 

  • Mallord JW, Orsman CJ, Cristinacce A, Butcher N, Stowe TJ, Charman EC (2012) Mortality of Wood Warbler Phylloscopus sibilatrix nests in Welsh oakwoods: predation rates and the identification of nest predators using miniature nest cameras. Bird Study 59:286–295. https://doi.org/10.1080/00063657.2012.669359

    Article  Google Scholar 

  • Mazerolle MJ (2016) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c), version 2.1-0

  • Maziarz M, Piggott C, Burgess M (2017) Predator recognition and differential behavioural responses of adult Wood Warblers Phylloscopus sibilatrix. Acta Ethol 64:211. https://doi.org/10.1007/s10211-017-0275-2

    Article  Google Scholar 

  • Maziarz M, Grendelmeier A, Wesołowski T, Arlettaz R, Broughton RK, Pasinelli G (2018) Patterns of predator behaviour and Wood Warbler Phylloscopus sibilatrix nest survival in a primeval forest. Ibis. https://doi.org/10.1111/ibi.12679

    Article  Google Scholar 

  • McKinnon L, Berteaux D, Gauthier G, Bêty J (2013) Predator-mediated interactions between preferred, alternative and incidental prey in the arctic tundra. Oikos 122:1042–1048. https://doi.org/10.1111/j.1600-0706.2012.20708.x

    Article  Google Scholar 

  • Mönkkönen M, Forsman J (2002) Heterospecific attraction among forest birds: a review. Ornithol Sci 1:41–51

    Article  Google Scholar 

  • Mulhauser B (2000) Ségrégation spatiale du pouillot de Bonelli Phylloscopus bonelli, du Poillot siffleur Ph. sibliatrix et du Poillot véloce Ph. collybita dans un massif forestier du Val-de-Traverse (canton de Neuchâtel, Suisse). Nos Oiseaux 47:221–228

    Google Scholar 

  • Naef-Daenzer B, Grüebler MU (2016) Post-fledging survival of altricial birds: ecological determinants and adaptation. J Field Ornithol 87:227–250. https://doi.org/10.1111/jofo.12157

    Article  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, San Diego

    Google Scholar 

  • Nussbaumer A, Waldner P, Etzold S, Gessler A, Benham S, Thomsen IM, Jørgensen BB, Timmermann V, Verstraeten A, Sioen G, Rautio P, Ukonmaanaho L, Skudnik M, Apuhtin V, Braun S, Wauer A (2016) Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe. For Ecol Manage 363:237–251. https://doi.org/10.1016/j.foreco.2015.12.033

    Article  Google Scholar 

  • Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast. Bioscience 46:323–330

    Article  Google Scholar 

  • Övergaard R, Gemmel P, Karlsson M (2007) Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:555–565. https://doi.org/10.1093/forestry/cpm020

    Article  Google Scholar 

  • Paar U, Guckland A, Dammann I, Albrecht M, Eichhorn J (2011) Häufigkeit und Intensität der Fruktifikation der Buche. AFZ Wald 66:26–29

    Google Scholar 

  • Pannekoek J, van Strien A (2005) TRIM 3 manual (trends & indices for monitoring data). Statistics Netherlands, Voorburg. http://www.bc-europe.eu/upload/EurButtInd/trim3man.pdf

  • Pasinelli G, Grendelmeier A, Gerber M, Arlettaz R (2016) Rodent-avoidance, topography and forest structure shape territory selection of a forest bird. BMC Ecol 16:24. https://doi.org/10.1186/s12898-016-0078-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Perdeck AC, Visser ME, van Balen JH (2000) Great Tit Parus major survival and the beech-crop cycle. Ardea 88:99–108

    Google Scholar 

  • Pucek Z, Jȩdrzejewski W, Jȩdrzejewska B, Pucek M (1993) Rodent population dynamics in a primeval deciduous forest (Białowieża National Park) in relation to weather, seed crop, and predation. Acta Theriol 38:199–232. https://doi.org/10.4098/AT.arch.93-18

    Article  Google Scholar 

  • Schmidt KA (2004) Incidental predation, enemy-free space and the coexistence of incidental prey. Oikos 106:335–343

    Article  Google Scholar 

  • Schmidt KA, Ostfeld RS (2003) Songbird populations in fluctuating environments: predator responses to pulsed resources. Ecology 84:406–415

    Article  Google Scholar 

  • Selås V (2017) Autumn irruptions of Eurasian Jay (Garrulus glandarius) in Norway in relation to acorn production and weather. Ornis Fenn 94:92–100

    Google Scholar 

  • Szymkowiak J, Kuczyński L (2015) Avoiding predators in a fluctuating environment: responses of the Wood Warbler to pulsed resources. Behav Ecol 26:601–608. https://doi.org/10.1093/beheco/aru237

    Article  Google Scholar 

  • Szymkowiak J, Thomson RL, Kuczyński L (2017) Interspecific social information use in habitat selection decisions among migrant songbirds. Behav Ecol 28:767–775. https://doi.org/10.1093/beheco/arx029

    Article  Google Scholar 

  • Vetter SG, Ruf T, Bieber C, Arnold W (2015) What is a mild winter? Regional differences in within-species responses to climate change. PLoS ONE 10:e0132178. https://doi.org/10.1371/journal.pone.0132178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walankiewicz W (2002) Breeding losses in the Collared Flycatcher Ficedula albicollis caused by nest predators in the Białowieża National Park (Poland). Acta Ornithol 37:21–26. https://doi.org/10.3161/068.037.0104

    Article  Google Scholar 

  • Wesołowski T, Rowiński P, Maziarz M (2009) Wood Warbler Phylloscopus sibilatrix: a nomadic insectivore in search of safe breeding grounds? Bird Study 56:26–33. https://doi.org/10.1080/00063650802681540

    Article  Google Scholar 

  • Wesołowski T, Rowiński P, Maziarz M (2015) Interannual variation in tree seed production in a primeval temperate forest: does masting prevail? Eur J For Res 134:99–112. https://doi.org/10.1007/s10342-014-0836-0

    Article  Google Scholar 

  • Wolff JO (1996) Population fluctuations of mast-eating rodents are correlated with production of acorns. J Mammal 77:850–856

    Article  Google Scholar 

  • Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A meta-analysis of resource pulse-consumer interactions. Ecol Monogr 80:125–151

    Article  Google Scholar 

  • Zwolak R, Bogdziewicz M, Rychlik L (2016) Beech masting modifies the response of rodents to forest management. For Ecol Manage 359:268–276. https://doi.org/10.1016/j.foreco.2015.10.017

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Swiss National Science Foundation (grant no. 31003A 143879/1) for financial support. We thank Fränzi Korner-Nievergelt for statistical advice and Christopher Whelan, three anonymous reviewers and Alisha Marti for insightful comments on drafts of this manuscript. A. G. and G. P. conceived and designed the study. M. F. processed and compiled the data. A. G. analysed the data. A. G. and G. P. wrote the drafts and M. F. critically revised the drafts. All applicable institutional and national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Grendelmeier.

Additional information

Communicated by F. Bairlein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grendelmeier, A., Flade, M. & Pasinelli, G. Trophic consequences of mast seeding for avian and mammalian seed and non-seed consumers in European temperate forests. J Ornithol 160, 641–653 (2019). https://doi.org/10.1007/s10336-019-01644-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01644-z

Keywords

Navigation