Skip to main content
Log in

Testing the acoustic adaptation hypothesis with native and introduced birds in Hawaiian forests

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The acoustic adaptation hypothesis (AAH) states that animals communicating acoustically adapt their vocalizations to the local conditions to optimize signal transmission. We tested select predictions of the AAH by studying the relationships between avian acoustics and forest structural parameters for a community of forest birds, including native and introduced species, on the Big Island of Hawai’i, USA. In areas of dense vegetation, where sound degrades more easily, we expect animal species to reduce the frequency at which they vocalize to reduce sound distortion. Because introduced species may have had limited time to adapt to the local habitat, we also hypothesize that their vocalizations will not change with differences in vegetation. Automated sound recorders were used to obtain information on the birds’ acoustic traits. Vegetation structural characteristics were calculated using a terrestrial light detection and ranging (LiDAR) sensor, which provides highly detailed information on the structure of the vegetation, including woody and leaf density. Of the seven native species studied, only two followed the predictions of the AAH. Interestingly, these two species had the shortest vocalizations, i.e., these vocalizations have the highest chance of information loss. Likewise, for the two introduced species, we did not observe any significant correlation with LiDAR-based vegetation structure metrics. Our study indicates that the predictions of AAH only partially account for the observed acoustic patterns observed in the study system. Other factors affecting acoustic divergence may be more important than the vegetation structure for most of the studied forest birds.

Zusammenfassung

Überprüfung der Akustischen Adaptionshypothese an einheimischen und eingeführten Vogelarten in einem Wald auf Hawai’i

Die Akustische Adaptionshypothese (engl.: Acoustic Adaptation Hypothesis, AAH) besagt, dass Tiere, die sich akustisch verständigen, ihre Lautäußerungen an die örtlichen Gegebenheiten anpassen, um die Signalübermittlung zu optimieren. Wir überprüften ausgewählte Vorhersagen der AAH, indem wir die Beziehungen zwischen dem Akustikverhalten der Vögel und Parametern der Waldstruktur an einer Waldvogelgemeinschaft aus einheimischen und eingeführten Arten auf Big Island (Hawai’i, USA) untersuchten. In Bereichen mit dichter Vegetation, in denen die Geräuschstärke rasch abnimmt, wäre zu erwarten, dass Tierarten die Frequenz ihrer Lautäußerungen reduzieren, um die Klangverzerrung zu verringern. Da den eingeführten Arten möglicherweise nur begrenzt Zeit zur Verfügung stand, sich an den örtlichen Lebensraum anzupassen, stellen wir außerdem die Hypothese auf, dass sich deren Lautäußerungen bei Vegetationsunterschieden nicht verändern. Mittels automatisierter Tonaufnahmegeräte sammelten wir Informationen über die akustischen Merkmale der Vögel. Die strukturellen Eigenschaften der Vegetation bestimmten wir unter Verwendung eines Lidar-Sensors (engl.: light detection and ranging = LiDAR), der detailgenaue Informationen über die Vegetationsstruktur, unter anderem über Gehölz- und Belaubungsdichten, liefert. Von den sieben untersuchten einheimischen Arten folgten nur zwei den Vorhersagen des AAH. Interessanterweise waren dies die beiden Arten mit den kürzesten Lautäußerungen, d.h. die Lautäußerungen, bei denen die größte Gefahr von Informationsverlust besteht. Bei den beiden eingeführten Arten beobachteten wir ebenfalls keine signifikante Korrelation mit den durch LiDAR ermittelten Vegetationsstrukturdaten. Unsere Studie lässt erkennen, dass die Vorhersagen der AAH die im untersuchten System beobachteten akustischen Muster nur teilweise erklären können. Für die meisten der untersuchten Waldvögel könnten andere die akustische Divergenz beeinflussende Faktoren eine wichtigere Rolle spielen als die Vegetationsstruktur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azar JF, Bell BD (2016) Acoustic features within a forest bird community of native and introduced species in New Zealand. Emu 116:22–31

    Article  Google Scholar 

  • Azar JF, Bell BD, Borowiec M (2014) Temporal change of the song of a local population of the Grey Warbler (Gerygone igata): has its song changed over time? Emu 114:80–85

    Article  Google Scholar 

  • Baltsavias EP (1999a) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214

    Article  Google Scholar 

  • Baltsavias EP (1999b) Airborne laser scanning: existing systems and firms and other resources. ISPRS J Photogramm Remote Sens 54:164–198

    Article  Google Scholar 

  • Berger AJ (1981) Hawaiian birdlife, 2nd edn. University of Hawaii Press, Honolulu

    Google Scholar 

  • Boncoraglio G, Saino N (2007) Habitat structure and the evolution of bird songs: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct Ecol 21:134–142

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, Sunderland

    Google Scholar 

  • Brauner N, Shacham M (1998) Role of range and precision of the independent variable in regression of data. AIChE J 44:603–611

    Article  CAS  Google Scholar 

  • Daniel JC, Blumstein DT (1999) A test of the acoustic adaptation hypothesis in four species of marmots. Anim Behav 56:1517–1528

    Article  Google Scholar 

  • Dassot M, Constant T, Fournier M (2011) The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann For Sci 68:959

    Article  Google Scholar 

  • Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince S (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79:305–319

    Article  Google Scholar 

  • Ey E, Fischer J (2009) The ‘‘acoustic adaptation hypothesis’’—a review of the evidence from birds, anurans and mammals. Bioacoustics 19:21–48

    Article  Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654

    Article  Google Scholar 

  • Fotheringham JR, Martin PR, Ratcliffe L (1997) Song transmission and auditory perception of distance in wood warblers (Parulinae). Anim Behav 53:1271–1285

    Article  PubMed  CAS  Google Scholar 

  • Gill FB (2007) Cues. Ornithology, 3rd edn. Freeman, New York, pp 215–242

    Google Scholar 

  • Gish SL, Morton ES (1981) Structural adaptations to local habitat acoustics in Carolina wren songs. Z Tiërpsychol 56:74–84

    Article  Google Scholar 

  • Hansen P (1979) Vocal learning: its role in adapting sound structures to long distance propagation and a hypothesis on its evolution. Anim Behav 27:1270–1271

    Article  Google Scholar 

  • Hardiman B, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92:1818–1827

    Article  PubMed  Google Scholar 

  • Hardiman B, Bohrer G, Gough CM, Curtis PS (2013) Canopy structural changes following widespread mortality of canopy dominant trees. Forests 4:537–552

    Article  Google Scholar 

  • Hart PJ, Hall R, Ray W, Beck A, Zook J (2015) Cicadas impact bird communication in a noisy tropical rainforest. Behav Ecol 26:839–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauglin M, Lien V, Næsset E, Gobakken T (2014) Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data. Int J Remote Sens 35:3135–3149

    Article  Google Scholar 

  • Henning JG, Radtke PJ (2006a) Detailed stem measurements of standing trees from ground-based scanning lidar. For Sci 52:67–80

    Google Scholar 

  • Henning JG, Radtke PJ (2006b) Ground-based laser imaging for assessing three-dimensional forest canopy structure. Photogramm Eng Remote Sens 12:1349–1358

    Article  Google Scholar 

  • Hosoi F, Omasa K (2007) Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging. J Exp Bot 58:3463–3473

    Article  PubMed  CAS  Google Scholar 

  • Irwin DE, Bensch S, Price TD (2001) Speciation in a ring. Nature 409:333–337

    Article  PubMed  CAS  Google Scholar 

  • Kelbe D, van Aardt J, Romanczyk P, Cawse-Nicholson K, van Leeuwen M (2015) Single-scan stem reconstruction using low-resolution terrestrial laser scanner data. IEEE J Sel Top Appl Earth Obs Remote Sens 8(7):3414–3427

    Article  Google Scholar 

  • Kelbe D, van Aardt J, Romanczyk P, van Leeuwen M (2016) Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics. IEEE Trans Geonsci Remote Sens 54:4314–4330

    Article  Google Scholar 

  • Kirschel ANG, Blumstein DT, Cohen RE, Buermann W, Smith TB, Slabbekoorn H (2009) Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. Behav Ecol 20:1089–1095

    Article  Google Scholar 

  • Knowlton JL, Flaspohler DJ, Paxton EH, Fukami T, Giardina CP, Gruner DS, Rankin Wilson EE (2017) Movements of four native Hawaiian birds across a naturally fragmented landscape. J Avian Biol 48(7):921–931

    Article  Google Scholar 

  • Laiolo P, Tella JL (2005) Habitat fragmentation affects culture transmission: patterns of song matching in Dupont’s lark. J Appl Ecol 42:1183–1193

    Article  Google Scholar 

  • Llusia D, Gómez M, Penna M, Márquez R (2013) Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals. PLoS ONE 8:e77312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LMS100, 111, 120, 151 (2009) Laser measurement systems operating instructions. SICK, Reute

    Google Scholar 

  • Lovell JL, Jupp DLB, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 29:607–622

    Article  Google Scholar 

  • Lynch A (1996) The population memetics of bird song. Ecology 15:181–197

    Google Scholar 

  • Male TD, Fancy SG, Ralph CJ (1998) Red-Billed Leiothrix. In: Rodewald PG (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Martens MJM (1980) Foliage as a low pass filter: experiments with model forests in an anechoic chamber. J Acoust Soc Am 67:66–72

    Article  Google Scholar 

  • Medina I, Francis CD (2012) Environmental variability and acoustic signals: a multi-level approach in songbirds. Biol Lett 8:928–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics: a comparative approach. Academic, London, pp 3–38

    Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Morton ES (1986) Predictions from the ranging hypothesis for the evolution of long distance signals in birds. Behaviour 99:65–86

    Article  Google Scholar 

  • Nemeth E, Winkler H, Dabelsteen T (2001) Differential degradation of antbird songs in a neotropical rainforest: adaptation to perch height? J Acoust Soc Am 110:3263–3274

    Article  PubMed  CAS  Google Scholar 

  • Patten MA, Rotenberry JT, Zuk M (2004) Habitat selection, acoustic adaptation, and the evolution of reproductive isolation. Evolution 58:2144–2155

    Article  PubMed  Google Scholar 

  • Pekin B, Jung J, Villanueva-Rivera L, Pijanowski B, Ahumada J (2012) Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a neotropical rainforest. Landsc Ecol 27:1513–1522

    Article  Google Scholar 

  • Pfaff JA, Zanette L, MacDougall-Shackleton SA, MacDougall-Shackleton EA (2007) Song repertoire size varies with HVC volume and is indicative of male quality in song sparrows (Melospiza melodia). Proc R Soc Lond B 274:2035–2040

    Article  Google Scholar 

  • Piza P, Sandoval L (2016) The differences in transmission properties of two bird calls show relation to their specific functions. J Acoust Soc Am 140:4271–4275

    Article  PubMed  Google Scholar 

  • Radtke P, Bolstad PV (2001) Laser point-quadrat sampling for estimating foliage-height profiles in broad-leaved forests. Can J For Res 31:410–418

    Article  Google Scholar 

  • Rogers LJ, Kaplan GT (2000) Songs, roars, and rituals: communication in birds, mammals, and other animals. Harvard University Press, USA

    Google Scholar 

  • Scott JM, Mountainspring S, Ramsey FL, Kepler CB (1986) Forest bird communities of the Hawaiian Islands: their dynamics, ecology, and conservation. Stud Avian Biol 9:1–431

    Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KJ, Mrosso HDJ, Miyagi R, Sluijs I, Schneider MV, Mann ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlidfish. Nature 455:620–626

    Article  PubMed  CAS  Google Scholar 

  • Slabbekoorn H, den Boer-Visser A (2006) Cities change the songs of birds. Curr Biol 16:2326–2331

    Article  PubMed  CAS  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267

    Article  PubMed  CAS  Google Scholar 

  • Slabbekoorn H, Smith TB (2002) Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals. Evolution 56:1849–1858

    Article  PubMed  Google Scholar 

  • Tobias JA, Aben J, Brumfield RT, Derryberry E, Halfwerk W, Slabbekoorn H, Seddon N (2010) Song divergence by sensory drive in Amazonian birds. Evolution 64:2820–2839

    PubMed  Google Scholar 

  • van Aardt JAN, Wynne RH, Oderwald RG (2006) Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis. For Sci 52:636–649

    Google Scholar 

  • Van der Zande D, Hoet W, Jonckheere I, van Aardt J, Coppin P (2006) Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agric For Meteorol 141:147–160

    Article  Google Scholar 

  • van Dongen WFD, Mulder RA (2006) Habitat density, song structure and dialects in the Madagascar paradise flycatcher (Terpsiphone mutata). J Avian Biol 37:349–356

    Article  Google Scholar 

  • van Riper SG (2000) Japanese white-eye (Zosterops japonicus). In: Poole A, Gill F (eds). The birds of North America, no. 487. Academy of Natural Sciences, Philadelphia and American Ornithologists’ Union, Washington D.C

  • Wiley RH (1991) Associations of song properties with habitat for territorial oscine birds of Eastern North America. Am Nat 138:973–993

    Article  Google Scholar 

  • Wong BBM, Candolin U, Lindström K (2007) Environmental deterioration compromises socially enforced signals of male quality in three-spined sticklebacks. Am Nat 170:184–189

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Beck, A. Tanimoto, N. Fernandez and S. Uehana for their help with the fieldwork. We thank the Hawai’i State Department of Land and Natural Resources for permission to work at the study area. This work was supported by the National Science Foundation, USA award #1345247. The study complied with all the current laws of the US. E. Sebastián-González is currently supported by a Juan de la Cierva Grant from the Spanish Ministry of Economy, Industry and Competitivity. We are grateful to two anonymous reviewers for constructive comments on the manuscript.

Supplementary acoustic material under: https://dx.doi.org/10.7479/rxwp-77cn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Sebastián-González.

Additional information

Communicated by S. Kipper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastián-González, E., van Aardt, J., Sacca, K. et al. Testing the acoustic adaptation hypothesis with native and introduced birds in Hawaiian forests. J Ornithol 159, 827–838 (2018). https://doi.org/10.1007/s10336-018-1542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-018-1542-3

Keywords

Navigation