Skip to main content

Advertisement

Log in

Migratory stopover timing is predicted by breeding latitude, not habitat quality, in a long-distance migratory songbird

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The timing of migration can have important survival impacts, as birds must synchronize their movements with favourable environmental conditions to reach their destination. The timing of arrival at and duration of migratory stopover may be largely governed by environmental conditions experienced en route as well as by endogenous factors, but our understanding of these processes is limited. We used light-level geolocators to collect start-to-finish spatio-temporal migration data for a declining aerial insectivore, the Purple Martin (Progne subis), that travels seasonally between North and South America. Using data obtained for birds originating from range-wide breeding populations, our objectives were to test intrinsic and extrinsic hypotheses for migration stopover duration as well as to identify important stopover regions during fall migration. We examined whether breeding latitude, fall migration timing, age, sex or habitat quality at stopover sites (measured using Normalized Difference Vegetation Index) influenced the duration of stopovers. We found that most individuals rely on the eastern coast of the Yucatan Peninsula, Honduras, and Nicaragua for stopovers during fall migration, where duration ranged from 1 to 36 days (average 6.8 ± 8.2). Stopovers in these regions were later and of longer duration for more northern breeding populations. Only breeding latitude predicted stopover duration, and not habitat quality at stopovers, lending support to the hypothesis that duration is prescribed by endogenous factors. The important core stopover regions we documented could be targeted for conservation efforts, particularly for steeply-declining, more northern breeding populations that have greater stopover duration in these areas.

Zusammenfassung

Der Breitengrad des Brutgebietes und nicht die Habitatqualität liefert bei einem langstreckenziehenden Singvogel Vorhersagen über den zeitlichen Ablauf der Rastpausen auf dem ZugDie zeitliche Abstimmung des Zuggeschehens kann wichtige Auswirkungen für das Überleben haben, da die Vögel ihre Bewegungen mit günstigen Umweltbedingungen synchronisieren müssen, um ihr Ziel zu erreichen. Der Zeitpunkt der Ankunft und die Verweildauer am Rastplatz können zum großen Teil von den unterwegs erlebten Umweltbedingungen als auch von endogenen Faktoren bestimmt werden, allerdings ist unser Verständnis dieser Prozesse begrenzt. Wir setzten Hell-Dunkel-Geolokatoren ein, um zwischen Abflug und Ankunft räumlich-zeitliche Zugdaten eines im Bestand abnehmenden insektenfressenden Flugjägers, der Purpurschwalbe (Progne subis), zu sammeln, welche saisonal zwischen Nord- und Südamerika wechselt. Anhand von Daten, die von Vögeln aus Brutpopulationen des gesamten Verbreitungsgebietes stammten, wollten wir intrinsische und extrinsische Hypothesen zur Dauer von Zwischenstopps auf dem Zug überprüfen sowie wichtige Rastgebiete auf dem Herbstzug ausfindig machen. Wir untersuchten, ob der Breitengrad des Brutgebietes, der zeitliche Ablauf des Herbstzuges, Alter, Geschlecht oder die Habitatqualität an den Rastplätzen (gemessen anhand des normalisierten differenzierten Vegetationsindex; Normalized Difference Vegetation Index) die Rastdauer beeinflussten. Wir stellten fest, dass die meisten Individuen die Ostküste der Yucatan-Halbinsel und Honduras sowie Nicaragua für Zwischenstopps auf dem Herbstzug nutzten, wobei die Verweildauer zwischen 1 und 36 (im Mittel 6.8 ± 8.2) Tagen betrug. Weiter nördlich brütende Populationen machten später in dieser Region Rast und blieben länger. Allein der Breitengrad des Brutgebietes, nicht die Habitatqualität der Rastplätze, lieferte Voraussagen über die Verweildauer, was die Hypothese stützt, dass die Dauer von endogenen Faktoren bestimmt wird. Die von uns dokumentierten wichtigen Kernrastgebiete könnten als Fokus für Schutzmaßnahmen dienen, insbesondere für rapide abnehmende nördlichere Brutpopulationen, die länger in diesen Gebieten rasten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alerstam T, Lindstrom A (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Archard F, Eva H, Glinni A, Mayaux P, Richards T, Stibig HJ (1998) Identification of deforestation hot spot areas in the humid tropics. Trees Publ. Series B. Research report 4. Space Application Institute, Global Vegetation Monitorings Unit, Joint Research Centre, European Commission, Brussels

    Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J stat softw 67(1):1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Both C (2010) Flexibility of timing of avian migration to climate change masked by environmental constraints en route. Curr Biol 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Both C, Van Turnhout CAM, Bijlsma RG, Siepel H, Van Strien AJV, Foppen EPB (2010) Avian population consequences of climate change are most sever for long-distance migrants in seasonal habitats. Proceedings Royal Soc B-Biol Sci 277:1259–1266. doi:10.1098/rspb.2009.1525

    Article  Google Scholar 

  • Buler J, Moore F, Woltmann S (2007) A multi-scale examination of stopover habitat use by birds. Ecology 88:1789–1802. doi:10.1890/06-1871.1

    Article  PubMed  Google Scholar 

  • Conklin JR, Battley PF, Potter MA, Fox JW (2010) Breeding latitude drives individual schedules in a trans-hemispheric migrant bird Nature. Communications 1:6. doi:10.1038/ncomms1072

    Google Scholar 

  • Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740. doi:10.1093/beheco/ari046

    Article  Google Scholar 

  • Fraser K et al (2013a) Consistent range-wide pattern in fall migration strategy of purple martin (Progne subis), despite different migration routes at the Gulf of Mexico. Auk 130:291–296. doi:10.1525/auk.2013.12225

    Article  Google Scholar 

  • Fraser K et al (2012a) Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc R Soc B Biol Sci 279:4901–4906. doi:10.1098/rspb.2012.2207

    Article  Google Scholar 

  • Fraser KC et al (2012b) Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc Biol Sci 279:4901–4906. doi:10.1098/rspb.2012.2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser KC, Silverio C, Kramer P, Mickle N, Aeppli R, Stutchbury BJM (2013b) A trans-hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites. Plos One. doi:10.1371/journal.pone.0064587

    Google Scholar 

  • Fraser KC, Shave A, Savage A, Ritchie A, Bell K, Siegrist J, Ray JD, Applegate K, Pearman M (2017) Determining fine-scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology. J Avian Biol. doi:10.1111/jav.01091

    Google Scholar 

  • Gourdji S, Laderach P, Valle A, Martinez C, Lobell D (2015) Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agric For Meteorol 200:270–281. doi:10.1016/j.agrformet.2014.10.002

    Article  Google Scholar 

  • Hidalgo H, Amador J, Alfaro E, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. doi:10.1016/j.jhydrol.2013.05.004

    Article  Google Scholar 

  • Johnston J, Robinson RA, Gargallo G, Julliard R, Van Der Jeugd H, Baillie SR (2016) Survival of Afro-Palaearctic passerine migrants in western Europe and the impacts of seasonal weather variables. Ibis 158:465–480

    Article  Google Scholar 

  • Knudsen E et al (2011) Challenging claims in the study of migratory birds and climate change. Biol Rev 86:928–946. doi:10.1111/j.1469-185X.2011.00179.x

    Article  PubMed  Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950

    Article  Google Scholar 

  • Kuznetsova A (2014) Package 'lmerTest'. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.425&rep=rep1&type=pdf

  • Lam L, McKinnon E, Ray JD, Pearman M, Hvenegaard GT, Mejeur J, Moscar L, Pearson M, Applegate K, Mammenga P, Tautin J, Fraser KC (2015) The influence of morphological variation on migration performance in a trans-hemispheric migratory songbird. Anim Migr 2(1):86–95

    Google Scholar 

  • Laughlin AJ, Taylor CM, Bradley DW, LeClair D, Clark RG, Dawson RD, Dunn PO, Horn A, Leonard M, Sheldon DR, Shutler D, Whittingham LA, Winkler DW, Norris DR (2013) Integrating information from geolocators, weather radar, and citizen science to uncover a key stopover area of an aerial insectivore. The Auk 130(2):230–239

    Article  Google Scholar 

  • May ML (2012) A critical overview of progress in studies of migration of dragonflies (Odonata: anisoptera), with emphasis on North America. J Insect Conserv. doi:10.1007/s10841-012-9540-x

    Google Scholar 

  • McKinnon EA, Fraser KC, Stutchbury BJM (2013) New discoveries in landbird migration using geolocators, and a flight plan for the future. Auk 130:211–222. doi:10.1525/auk.2013.12226

    Article  Google Scholar 

  • McKinnon EA, Fraser KC, Stanley CQ, Stutchbury BJM (2014) Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration. Plos One 9:9. doi:10.1371/journal.pone.0105605

    Google Scholar 

  • McKinnon EA, Stanley CQ, Stutchbury BJM (2015) Carry-over effects of nonbreeding habitat on start-to-finish spring migration performance of a songbird. Plos One 10:17. doi:10.1371/journal.pone.0141580

    Google Scholar 

  • Michel NL, Smith AC, Clark RG, Morrisey CA, Hobson KA (2016) Differences in spatial synchrony and interspecific concordance inform guild-level population trends for aerial insectivorous birds. Ecography. doi:10.1111/ecog.01798

    Google Scholar 

  • Moreau RE (1972) The Palaearctic-African Bird Migration Systems. Academic Press, London

    Google Scholar 

  • Niles DM (1972) Molt cycles of Purple Martins (Progne subis). Condor 74:61–71

    Article  Google Scholar 

  • Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in Speed and Duration of Bird Migration between Spring and Autumn. Am Nat 181(6):837–845

    Article  PubMed  Google Scholar 

  • North American Bird Conservation Initiative, USA Committee (2014) The State of the Birds 2014 Report. USA Department of Interior, Washington, D.C. 16 pages. Available from http://www.stateofthebirds.org/2014%20SotB_FINAL_low-res.pdf. Accessed 07 May 2016

  • North American Bird Conservation Initiative Canada (2012) The State of Canada’s Birds Environment Canada, Ottawa, Canada. 36 pages. Available from http://www.stateofcanadasbirds.org/State_of_Canada’s_birds_2012.pdf. Accessed 07 May 2016

  • Nebel S, Mills A, McCracken JD, Taylor PD (2010) Declines of aerial insectivores in North America follow a geographic gradient. Avian Conserv Ecol 5(2):1. doi:10.5751/ACE-00391-050201

    Google Scholar 

  • Pettorelli N, Vik J, Mysterud A, Gaillard J, Tucker C, Stenseth N (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. doi:10.1016/j.tree.2005.05.011

    Article  PubMed  Google Scholar 

  • Pillar AG, Marra PP, Flood NJ, Reudink MW (2015) Moult migration in Bullock’s orioles (Icterus bullockii) confirmed by geolocators and stable isotope analysis. J Ornithol 157:265–275. doi:10.1007/s10336-015-1275-5

    Article  Google Scholar 

  • Pyle P (1997) Identification guide to North American birds. Slate Creek Press, Bolinas, CA

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Sauer JR, Hines JE, Fallon JE, Pardieck KL, Ziolkoski Jr, DJ, Link WA (2014) The North American breeding bird survey, results and analysis 1966–2013. Laurel: USGS Patuxent Wildlife Research Center. http://www.mbr-pwrc.usgs.gov/bbs/. Accessed 07 May 2015

  • Schaub M, Jakober H, Stauber W (2011) Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine. Oecologia 167:445–459. doi:10.1007/s00442-011-1999-8

    Article  PubMed  Google Scholar 

  • Schultz P, Halpert M (1993) Global correlation of temperature. NDVI precip Adv Sp Res 13:277–280. doi:10.1016/0273-1177(93)90559-T

    Article  Google Scholar 

  • Skrip M, Bauchinger U, Goymann W, Fusani L, Cardinale M, Alan R, McWilliams S (2015) Migrating songbirds on stopover prepare for, and recover from, oxidative challenges posed by long-distance flight. Ecol Evol 5:3198–3209. doi:10.1002/ece3.1601

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith A, Hudson M, Downes C, Francis C (2015) Change points in the population trends of aerial-insectivorous birds in North America: synchronized in time across species and regions. Plos One. doi:10.1371/journal.pone.0130768

    Google Scholar 

  • Stach R, Kullberg C, Jakobsson S, Fransson T (2012) Geolocators reveal three consecutive wintering areas in the thrush nightingale. Anim Migr 1:1–7. doi:10.2478/ami-2012-0001

    Article  Google Scholar 

  • Stanley C, MacPherson M, Fraser K, McKinnon E, Stutchbury B (2012) Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. Plos One. doi:10.1371/journal.pone.0040688

    Google Scholar 

  • Stanley C et al (2015) Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv Biol 29:164–174. doi:10.1111/cobi.12352

    Article  PubMed  Google Scholar 

  • Stutchbury B et al (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896–896. doi:10.1126/science.1166664

    Article  CAS  PubMed  Google Scholar 

  • Stutchbury B, Gow E, Done T, MacPherson M, Fox J, Afanasyev V (2011) Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics. Proc R Soc B Biol Sci 278:131–137. doi:10.1098/rspb.2010.1220

    Article  Google Scholar 

  • Tottrup AP et al (2012a) Drought in Africa caused delayed arrival of European songbirds. Science 338:1307–1307. doi:10.1126/science.1227548

    Article  CAS  PubMed  Google Scholar 

  • Tottrup AP et al (2012b) The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc Royal Soc B-Biol Sci 279:1008–1016. doi:10.1098/rspb.2011.1323

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wolda H (1978) Seasonal fluctuations in rainfall, food, and abundance of tropical insects. J Anim Ecol 47:369–381. doi:10.2307/3789

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Detwiler, J. Treberg, L. Lam, and E. McKinnon for helpful comments on earlier drafts of this manuscript. We thank the many Citizen Scientists who assisted with data collection; we are grateful for their enthusiasm and continuing support for the Hemisphere to Hemisphere Purple Martin project (full list of collaborators at http://www.abclab.ca). We thank John Barrow, David Newstead, and Brett Ortego for support and fieldwork at the south Texas field site, and Julie Hovis, James Beatson, Wendell Rogers and Donnie Beard for their work at the South Carolina study site. Funding was provided by the University of Manitoba, Disney’s Conservation Fund, Molson Foundation, and Schad Foundation, Alberta Conservation Association, James L. Baillie Memorial Fund (Bird Studies Canada), Bill and Betty Wasserfall Memorial Award (Ontario Bird Banding Association), Camrose Wildlife Stewardship Society, TD Friends of the Environment Foundation, Alberta Sport, Recreation, Parks, and Wildlife Foundation, and Mitacs Globalink. Light-level geolocators used at the Texas Panhandle site were purchased by the USA Department of Energy/National Nuclear Security Administration in cooperation with Consolidated Nuclear Security, LLC. The research in this manuscript complies with the current laws of the country in which the work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Fraser.

Additional information

Communicated by N. Chernetsov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26001 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loon, A.V., Ray, J.D., Savage, A. et al. Migratory stopover timing is predicted by breeding latitude, not habitat quality, in a long-distance migratory songbird. J Ornithol 158, 745–752 (2017). https://doi.org/10.1007/s10336-017-1435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1435-x

Keywords

Navigation