Skip to main content
Log in

A colour to birds and to humans: why is it so different?

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The avian visual model has become nowadays a standard for quantifying colours of birds. Here, I review the biological bases of the importance of visual modelling to most ornithologists, focusing on the causes of the difference in colours to birds and to humans, both proximately and ultimately. Not only the sensitivity of retinal photoreceptors and performances of ocular media, but also the number of photoreceptor types are all attributed to the bird–human difference proximately. As the ultimate cause, the evolutionary history of birds and humans should divide the colours perceived by them: birds would retain their colour vision from the ancient ancestry, while primates such as humans would have reacquired the colour vision relatively recently. Finally, I review how to process and to analyze data produced by the visual model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agresti A (2002) An introduction to categorical data analysis. Wiley Inter-Science, Hoboken

    Book  Google Scholar 

  • Angueyra JM, Rieke F (2013) Origin and effect of phototransduction noise in primate cone photoreceptors. Nat Neurosci 16:1692–1700

    Article  PubMed  CAS  Google Scholar 

  • Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J (2002) Trichromacy in Australian marsupials. Curr Biol 12:657–660

    Article  PubMed  CAS  Google Scholar 

  • Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56:293–304

    Article  Google Scholar 

  • Biondini ME, Mielke PW Jr, Redente EF (1991) Permutation techniques based on Euclidean analysis spaces: a new and powerful statistical method for ecological researches. In: Feoli F, Orlóci L (eds) Computer assisted vegetation analysis. Kluwer Academic Publisher, Dordrecht, pp 221–240

    Chapter  Google Scholar 

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vision Res 48:2022–2041

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK, Dartnall HJA (1980) Visual pigments of rods and cones in a human retina. J Physiol 298:501–511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collin SP, Davies WL, Hart NS, Hunt DM (2009) The evolution of early vertebrate photoreceptors. Phil Trans R Soc B 364:2925–2940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Douglas RH, Jeffery G (2014) The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc R Soc Lond B 281:20132995

    Article  CAS  Google Scholar 

  • Endler JA, Mielke PW Jr (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431

    Article  Google Scholar 

  • Estey T, Piatigorsky J, Lassen N, Vasiliou V (2007) ALDH3A1: a cornel crystalin with diverse functions. Exp Eye Res 84:3–12

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:281–322

    Article  PubMed  CAS  Google Scholar 

  • Griswold MS, Stark WS (1992) Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet. Vis Res 32:1739–1743

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2001) Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A 187:685–698

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2002) Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol 205:3925–3935

    PubMed  Google Scholar 

  • Hart NS (2004) Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics. J Exp Biol 207:1229–1240

    Article  PubMed  Google Scholar 

  • Hart NS, Hunt DM (2007) Avian visual pigments: characteristics, spectral tuning and evolution. Am Nat 169:S7–S26

    Article  PubMed  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC, Bennett ATD (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J Comp Physiol A 186:375–387

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Theiss SM, Harahush BK, Collin SP (2011) Microspectorphotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98:193–201

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Vorobyev M (2005) Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol A 191:381–392

    Article  Google Scholar 

  • Hogg C, Neveu M, Stokkan K-A, Folkow L, Cottrill P, Douglas R, Hunt DM, Jeffrey G (2011) Arctic reindeer extend their visual range into the ultraviolet. J Exp Biol 214:2014–2016

    Article  PubMed  Google Scholar 

  • Jacobs GH (1996) Primate photopigments and primate color vision. Proc Natl Acad Sci USA 93:577–581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jacobs GH (2009) Evolution of colour vision in mammals. Phil Trans R Soc B 364:2957–2967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc R Soc Lon B 275:947–954

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, second English edition. Elsevier, Amsterdam

    Google Scholar 

  • Maier EJ (1992) Spectral sensitivities including the ultraviolet of the passeirform bird Leiothrix lutea. J Comp Physiol A 170:709–714

    Article  Google Scholar 

  • Mollon JD (1989) “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J Exp Biol 146:21–38

    PubMed  CAS  Google Scholar 

  • Olsson P, Lind O, Kelber A (2015) Bird colour vision: behavioural thresholds reveal receptor noise. J Exp Biol 218:184–193

    Article  PubMed  Google Scholar 

  • Osorio D, Vorobyev M, Jones CD (1999a) Colour vision of domestic chicks. J Exp Biol 202:2951–2959

    PubMed  CAS  Google Scholar 

  • Osorio D, Miklósi A, Zs Gonda (1999b) Visual ecology and perception of coloration patterns by domestic chicks. Evol Ecol 13:673–689

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing version 3.1.3. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 May 2015

  • Remy M, Emmerton J (1989) Behavioral spectral sensitivity of different retinal areas in pigeons. Behav Neurosci 103:170–177

    Article  PubMed  CAS  Google Scholar 

  • Shapley R, Hawken MJ (2011) Color in the cortex: single- and double-opponent cells. Vis Res 51:701–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Yokoyama S (2003) Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 100:8308–8313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207:2471–2485

    Article  PubMed  Google Scholar 

  • Stevens M, Párraga CA, Cuthill IC, Partridge JC, Troscianko TS (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90:211–237

    Article  Google Scholar 

  • Stevens M, Troscianko J, Spottiswoode CN (2013) Repeated targeting of the same hosts by a brood parasite compromises host egg rejection. Nat Comm 4:2475

    Google Scholar 

  • Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18:198–205

    Article  Google Scholar 

  • Tanaka KD, Morimoto G, Stevens M, Ueda K (2011) Rethinking visual supernormal stimuli in cuckoos: visual modeling of host and parasite signals. Behav Ecol 22:1012–1019

    Article  Google Scholar 

  • Tanaka KD, Ueda K (2005) Horsfield’s hawk-cuckoo nestlings simulate multiple gapes for begging. Science 308:653

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KD, Denda T, Ueda K, Emura N (2015) Fruit colour conceals the endocarp dimorphism of Scaevola taccada (Goodeniaceae) in the vision of avian seed dispersers, found in a subtropical island of Okinawa. J Trop Ecol (in press)

  • Tsukahara N, Tani Y, Lee E, Kikuchi H, Endoh K, Ichikawa M, Sugita S (2010) Microstructure characteristics of the cornea in birds and mammals. J Vet Med Sci 72:1137–1143

    Article  PubMed  Google Scholar 

  • Tsukahara N, Tani Y, Nihei K, Kabuyama Y, Sugita S (2011) High levels of apolipoproteins found in the soluble fraction of avian cornea. Exp Eye Res 92:432–435

    Article  PubMed  CAS  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265:351–358

    Article  CAS  Google Scholar 

  • Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633

    Article  PubMed  CAS  Google Scholar 

  • Wright MW, Bowmaker JK (2001) Retinal photoreceptors of paleognathous birds: the ostrich (Struthio camelus) and rhea (Rhea americana). Vision Res 41:1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the speakers in the symposium at IOC26, W Kitamura, G Morimoto, T Yamasaki, and particularly M Stevens, the keynote speaker, for their contribution. I thank members of the Scientific Programme Committee for their editorial support, and two anonymous referees for their very helpful comments. I thank N Hart for providing photoreceptor sensitivity data. I received financial supports from Grants-in-Aid by the Japan Society for the Promotion of Science grant no. 24770028 (Young Scientists B) and 23255004 (Basic A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita D. Tanaka.

Additional information

Communicated by E. Matthysen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K.D. A colour to birds and to humans: why is it so different?. J Ornithol 156 (Suppl 1), 433–440 (2015). https://doi.org/10.1007/s10336-015-1234-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1234-1

Keywords

Navigation