Skip to main content

Advertisement

Log in

Cranial bone imaging using ultrashort echo-time bone-selective MRI as an alternative to gradient-echo based “black-bone” techniques

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

CT is the clinical standard for surgical planning of craniofacial abnormalities in pediatric patients. This study evaluated three MRI cranial bone imaging techniques for their strengths and limitations as a radiation-free alternative to CT.

Methods

Ten healthy adults were scanned at 3 T with three MRI sequences: dual-radiofrequency and dual-echo ultrashort echo time sequence (DURANDE), zero echo time (ZTE), and gradient-echo (GRE). DURANDE bright-bone images were generated by exploiting bone signal intensity dependence on RF pulse duration and echo time, while ZTE bright-bone images were obtained via logarithmic inversion. Three skull segmentations were derived, and the overlap of the binary masks was quantified using dice similarity coefficient. Craniometric distances were measured, and their agreement was quantified.

Results

There was good overlap of the three masks and excellent agreement among craniometric distances. DURANDE and ZTE showed superior air-bone contrast (i.e., sinuses) and soft-tissue suppression compared to GRE.

Discussions

ZTE has low levels of acoustic noise, however, ZTE images had lower contrast near facial bones (e.g., zygomatic) and require effective bias-field correction to separate bone from air and soft-tissue. DURANDE utilizes a dual-echo subtraction post-processing approach to yield bone-specific images, but the sequence is not currently manufacturer-supported and requires scanner-specific gradient-delay corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Johnson D, Wilkie AO (2011) Craniosynostosis. Eur J Hum Genet 19(4):369–376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ (Clin Res Ed) 346:f2360

    Google Scholar 

  4. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee H, Zhao X, Song HK, Zhang R, Bartlett SP, Wehrli FW (2019) Rapid dual-RF, dual-echo, 3D ultrashort echo time craniofacial imaging: a feasibility study. Magn Reson Med 81(5):3007–3016

    Article  PubMed  Google Scholar 

  6. Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, Delso G, Shanbhag DD (2016) Zero TE MR bone imaging in the head. Magn Reson Med 75(1):107–114

    Article  PubMed  Google Scholar 

  7. Eley KA, McIntyre AG, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol 85(1011):272–278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Patel KB, Eldeniz C, Skolnick GB, Jammalamadaka U, Commean PK, Goyal MS, Smyth MD, An H (2020) 3D pediatric cranial bone imaging using high-resolution MRI for visualizing cranial sutures: a pilot study. J Neurosurg Pediatr 26(3):311–317

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eley KA, Watt-Smith SR, Sheerin F, Golding SJ (2014) “Black Bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol 24(10):2417–2426

    Article  PubMed  Google Scholar 

  10. Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27(6):825–846

    Article  PubMed  Google Scholar 

  11. Reichert ILH, Robson MD, Gatehouse PD, He T, Chappell KE, Holmes J, Girgis S, Bydder GM (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23(5):611–618

    Article  PubMed  Google Scholar 

  12. Eley KA, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a potential alternative to CT when imaging the head and neck: report of eight clinical cases and review of the Oxford experience. Br J Radiol 85(1019):1457–1464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Saarikko A, Mellanen E, Kuusela L, Leikola J, Karppinen A, Autti T, Virtanen P, Brandstack N (2020) Comparison of black bone MRI and 3D-CT in the preoperative evaluation of patients with craniosynostosis. J Plast Reconstr Aesthet Surg 73(4):723–731

    Article  PubMed  Google Scholar 

  14. Kuusela L, Hukki A, Brandstack N, Autti T, Leikola J, Saarikko A (2018) Use of black-bone MRI in the diagnosis of the patients with posterior plagiocephaly. Childs Nerv Syst 34(7):1383–1389

    Article  PubMed  Google Scholar 

  15. Leonhardt Y, Kronthaler S, Feuerriegel G, Karampinos DC, Schwaiger BJ, Pfeiffer D, Makowski MR, Koerte IK, Liebig T, Woertler K, Steinborn MM, Gersing AS (2022) CT-like MR-derived images for the assessment of craniosynostosis and other pathologies of the pediatric skull. Clin Neuroradiol. https://doi.org/10.1007/s00062-022-01182-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnson EM, Vyas U, Ghanouni P, Pauly KB, Pauly JM (2017) Improved cortical bone specificity in UTE MR imaging. Magn Reson Med 77(2):684–695

    Article  PubMed  Google Scholar 

  17. Zimmerman CE, Khandelwal P, Xie L, Lee H, Song HK, Yushkevich PA, Vossough A, Bartlett SP, Wehrli FW (2021) Automatic segmentation of bone selective MR images for visualization and craniometry of the cranial vault. Acad Radiol. https://doi.org/10.1016/j.acra.2021.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang R, Lee H, Zhao X, Song HK, Vossough A, Wehrli FW, Bartlett SP (2020) Bone-selective MRI as a nonradiative alternative to CT for craniofacial imaging. Acad Radiol 27(11):1515–1522

    Article  PubMed  PubMed Central  Google Scholar 

  19. Delso G, Wiesinger F, Sacolick LI, Kaushik SS, Shanbhag DD, Hüllner M, Veit-Haibach P (2015) Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull. J Nucl Med 56(3):417–422

    Article  PubMed  Google Scholar 

  20. Cho SB, Baek HJ, Ryu KH, Choi BH, Moon JI, Kim TB, Kim SK, Park H, Hwang MJ (2019) Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. AJNR Am J Neuroradiol 40(1):109–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lu A, Gorny KR, Ho ML (2019) Zero TE MRI for craniofacial bone imaging. AJNR Am J Neuroradiol 40(9):1562–1566

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee H, Zhao X, Song HK, Wehrli FW (2020) Self-navigated three-dimensional ultrashort echo time technique for motion-corrected skull MRI. IEEE Trans Med Imaging 39(9):2869–2880

    Article  PubMed  PubMed Central  Google Scholar 

  23. Song HK, Dougherty L (2000) k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44(6):825–832

    Article  PubMed  CAS  Google Scholar 

  24. Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67(2):510–518

    Article  PubMed  Google Scholar 

  25. Li C, Magland JF, Seifert AC, Wehrli FW (2014) Correction of excitation profile in zero echo time (ZTE) imaging using quadratic phase-modulated RF pulse excitation and iterative reconstruction. IEEE Trans Med Imaging 33(4):961–969

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li C, Magland JF, Zhao X, Seifert AC, Wehrli FW (2017) Selective in vivo bone imaging with long-T(2) suppressed PETRA MRI. Magn Reson Med 77(3):989–997

    Article  PubMed  Google Scholar 

  27. Herrmann K-H, Krämer M, Reichenbach JR (2016) Time efficient 3D radial UTE sampling with fully automatic delay compensation on a clinical 3T MR scanner. PLoS ONE 11(3):e0150371

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  PubMed  Google Scholar 

  30. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  31. Song HK, Wehrli FW, Ma J (1997) In vivo MR microscopy of the human skin. Magn Reson Med 37(2):185–191

    Article  PubMed  CAS  Google Scholar 

  32. Hodgson RJ, O’Connor PJ, Grainger AJ (2012) Tendon and ligament imaging. Br J Radiol 85(1016):1157–1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Du J, Chiang AJ-T, Chung CB, Statum S, Znamirowski R, Takahashi A, Bydder GM (2010) Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence. Magn Reson Imaging 28(2):178–184

    Article  PubMed  Google Scholar 

  34. Wiesinger F, Ho ML (2022) Zero-TE MRI: principles and applications in the head and neck. Br J Radiol 95(1136):20220059

    Article  PubMed  PubMed Central  Google Scholar 

  35. Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW (2005) Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging JMRI 22(5):647–655

    Article  PubMed  Google Scholar 

  36. Wehrli FW, Perkins TG, Shimakawa A, Roberts F (1987) Chemical shift-induced amplitude modulations in images obtained with gradient refocusing. Magn Reson Imaging 5:157–158

    Article  PubMed  CAS  Google Scholar 

  37. Engström M, McKinnon G, Cozzini C, Wiesinger F (2020) In-phase zero TE musculoskeletal imaging. Magn Reson Med 83(1):195–202

    Article  PubMed  Google Scholar 

  38. Froidevaux R, Weiger M, Brunner DO, Dietrich BE, Wilm BJ, Pruessmann KP (2018) Filling the dead-time gap in zero echo time MRI: principles compared. Magn Reson Med 79(4):2036–2045

    Article  PubMed  Google Scholar 

  39. Dremmen MHG, Wagner MW, Bosemani T, Tekes A, Agostino D, Day E, Soares BP, Huisman T (2017) Does the addition of a “Black Bone” sequence to a fast multisequence trauma MR protocol allow MRI to replace CT after traumatic brain injury in children? AJNR Am J Neuroradiol 38(11):2187–2192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Patel KB, Eldeniz C, Skolnick GB, Commean PK, Eshraghi Boroojeni P, Jammalamadaka U, Merrill C, Smyth MD, Goyal MS, An H (2022) Cranial vault imaging for pediatric head trauma using a radial VIBE MRI sequence. J Neurosurg Pediatr. https://doi.org/10.3171/2022.2.Peds2224:1-6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kralik SF, Supakul N, Wu IC, Delso G, Radhakrishnan R, Ho CY, Eley KA (2019) Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology 61(1):81–87

    Article  PubMed  Google Scholar 

  42. Ljungberg E, Wood TC, Solana AB, Williams SCR, Barker GJ, Wiesinger F (2022) Motion corrected silent ZTE neuroimaging. Magn Reson Med 88(1):195–210

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eshraghi Boroojeni P, Chen Y, Commean PK, Eldeniz C, Skolnick GB, Merrill C, Patel KB, An H (2022) Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HiPCB). Magn Reson Med 88(5):2285–2297

    Article  PubMed  CAS  Google Scholar 

  44. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714

    Article  PubMed  Google Scholar 

  45. Zheng W, Kim JP, Kadbi M, Movsas B, Chetty IJ, Glide-Hurst CK (2015) Magnetic resonance-based automatic air segmentation for generation of synthetic computed tomography scans in the head region. Int J Radiat Oncol Biol Phys 93(3):497–506

    Article  PubMed  Google Scholar 

Download references

Funding

Study supported by the National Institutes of Health: NIH R21 DE028417, NIH T32 EB020087, F31 AR079925.

Author information

Authors and Affiliations

Authors

Contributions

FWW, HL, HKS, CSR, and SB conceptualized and designed the study; NK acquired the data; NK, BCJ, and CW analyzed and interpreted the data; NK and FWW drafted the initial manuscript; NK, HKS, and FWW reviewed and edited the manuscript; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Felix W. Wehrli.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical standards

All procedures performed in this study involving human participants were approved by the University of Pennsylvania’s institutional review board and made in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written informed consent was obtained from all participants, in accordance with the University of Pennsylvania’s institutional review board requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamona, N., Jones, B.C., Lee, H. et al. Cranial bone imaging using ultrashort echo-time bone-selective MRI as an alternative to gradient-echo based “black-bone” techniques. Magn Reson Mater Phy 37, 83–92 (2024). https://doi.org/10.1007/s10334-023-01125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-023-01125-8

Keywords

Navigation