Skip to main content
Log in

Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) for the monitoring of High Intensity Focused Ultrasound (HIFU) ablation in anisotropic tissue

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

We introduce a non-invasive MR-Acoustic Radiation Force Imaging (ARFI)-based elastography method that provides both the local shear modulus and temperature maps for the monitoring of High Intensity Focused Ultrasound (HIFU) therapy.

Materials and methods

To take tissue anisotropy into account, the local shear modulus μ is determined in selected radial directions around the focal spot by fitting the phase profiles to a linear viscoelastic model, including tissue-specific mechanical relaxation time τ. MR-ARFI was evaluated on a calibrated phantom, then applied to the monitoring of HIFU in a gel phantom, ex vivo and in vivo porcine muscle tissue, in parallel with MR-thermometry.

Results

As expected, the shear modulus polar maps reflected the isotropy of phantoms and the anisotropy of muscle. In the HIFU monitoring experiments, both the shear modulus polar map and the thermometry map were updated with every pair of MR-ARFI phase images acquired with opposite MR-ARFI-encoding. The shear modulus was found to decrease (phantom and ex vivo) or increase (in vivo) during heating, before remaining steady during the cooling phase. The mechanical relaxation time, estimated pre- and post-HIFU, was found to vary in muscle tissue.

Discussion

MR-ARFI allowed for monitoring of viscoelasticity changes around the HIFU focal spot even in anisotropic muscle tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jolesz FA (2009) MRI-guided focused ultrasound surgery. Annu Rev Med 60:417–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim Y (2015) Advances in MR image-guided high-intensity focused ultrasound therapy. Int J Hyperthermia 31:225–232

    Article  PubMed  Google Scholar 

  3. Kuroda K (2018) MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 47:316–331

    Article  PubMed  Google Scholar 

  4. Ebbini ES, Ter Haar G (2015) Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 31:77–89

    Article  PubMed  Google Scholar 

  5. Ebbini ES, Simon C, Liu D (2018) Real-time ultrasound thermography and thermometry. IEEE Signal Process Mag 35:166–174

    Article  PubMed  PubMed Central  Google Scholar 

  6. Geoghegan R, ter Haar G, Nightingale K, Marks L, Natarajan S (2021) Methods of monitoring thermal ablation of soft tissue tumors – a comprehensive review. Med Phys 49:769–791

    Article  Google Scholar 

  7. Lewis MA, Staruch RM, Chopra R (2015) Thermometry and ablation monitoring with ultrasound. Int J Hyperthermia 31:163–181

    Article  PubMed  PubMed Central  Google Scholar 

  8. Odéen H, Parker DL (2019) Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. Prog Nucl Magn Reson Spectrosc 110:34–61

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rieke V, Pauly KB (2008) MR Thermometry. J Magn Reson Imaging 27:376–390

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34:359–367

    Article  PubMed  Google Scholar 

  11. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823

    Article  CAS  PubMed  Google Scholar 

  12. Kokuryo D, Kumamoto E, Kuroda K (2020) Recent technological advancements in thermometry. Adv Drug Deliv Rev 163–164:19–39

    Article  PubMed  Google Scholar 

  13. Arnal B, Pernot M, Tanter M (2011) Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions. IEEE Trans Ultrason Ferroelectr Freq Control 58:1603–1611

    Article  PubMed  Google Scholar 

  14. Chen J, Woodrum DA, Glaser KJ, Murphy MC, Gorny K, Ehman R (2014) Assessment of in vivo laser ablation using MR elastography with an inertial driver. Magn Reson Med 72:59–67

    Article  PubMed  Google Scholar 

  15. Corbin N, Vappou J, Breton E, Boehler Q, Barbé L, Renaud P, de Mathelin M (2016) Interventional MR elastography for MRI-guided percutaneous procedures: interventional MR elastography. Magn Reson Med 75:1110–1118

    Article  PubMed  Google Scholar 

  16. Mariani A, Kwiecinski W, Pernot M, Balvay D, Tanter M, Clement O, Cuenod CA, Zinzindohoue F (2014) Real time shear waves elastography monitoring of thermal ablation: in vivo evaluation in pig livers. J Surg Res 188:37–43

    Article  CAS  PubMed  Google Scholar 

  17. Sapin-de Brosses E, Pernot M, Tanter M (2011) The link between tissue elasticity and thermal dose in vivo. Phys Med Biol 56:7755–7765

    Article  Google Scholar 

  18. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857

    Article  CAS  PubMed  Google Scholar 

  19. Wu T, Felmlee JP, Greenleaf JF, Riederer SJ, Ehman RL (2001) Assessment of thermal tissue ablation with MR elastography. Magn Reson Med 45:80–87

    Article  CAS  PubMed  Google Scholar 

  20. Kim K, Breton E, Gangi A, Vappou J (2020) Simultaneous fat-referenced proton resonance frequency shift thermometry and MR elastography for the monitoring of thermal ablations. Magn Reson Med 84:339–347

    Article  CAS  PubMed  Google Scholar 

  21. Le Y, Glaser K, Rouviere O, Ehman R, Felmlee JP (2006) Feasibility of simultaneous temperature and tissue stiffness detection by MRE. Magn Reson Med 55:700–705

    Article  PubMed  Google Scholar 

  22. Chu B, Apfel RE (1982) Acoustic radiation pressure produced by a beam of sound. J Acoust Soc Am 72:1673–1687

    Article  Google Scholar 

  23. Torr GR (1984) The acoustic radiation force. Am J Phys 52:402–408

    Article  Google Scholar 

  24. Nightingale K, McAleavey S, Trahey G (2003) Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 29:1715–1723

    Article  PubMed  Google Scholar 

  25. Larrat B, Pernot M, Aubry J-F, Sinkus R, Tanter M, Fink M (2008) Radiation force localization of HIFU therapeutic beams coupled with magnetic resonance-elastography treatment monitoring in vivo application to the rat brain. In: 2008 IEEE Ultrasonics Symposium. pp 451–454

  26. McDannold N, Maier SE (2008) Magnetic resonance acoustic radiation force imaging. Med Phys 35:3748–3758

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holbrook AB, Ghanouni P, Santos JM, Medan Y, Butts Pauly K (2011) In vivo MR acoustic radiation force imaging in the porcine liver. Med Phys 38:5081–5089

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kaye EA, Chen J, Pauly KB (2011) Rapid MR-ARFI method for focal spot localization during focused ultrasound therapy. Magn Reson Med 65:738–743

    Article  PubMed  Google Scholar 

  29. Larrat B, Pernot M, Aubry J-F, Dervishi E, Sinkus R, Seilhean D, Marie Y, Boch A-L, Fink M, Tanter M (2010) MR-guided transcranial brain HIFU in small animal models. Phys Med Biol 55:365–388

    Article  CAS  PubMed  Google Scholar 

  30. Souchon R, Salomir R, Beuf O, Milot L, Grenier D, Lyonnet D, Chapelon J, Rouvière O (2008) Transient MR elastography (t-MRE) using ultrasound radiation force: theory, safety, and initial experiments in vitro. Magn Reson Med 60:871–881

    Article  PubMed  Google Scholar 

  31. Auboiroux V, Viallon M, Roland J, Hyacinthe J-N, Petrusca L, Morel DR, Goget T, Terraz S, Gross P, Becker CD, Salomir R (2012) ARFI-prepared MRgHIFU in liver: simultaneous mapping of ARFI-displacement and temperature elevation, using a fast GRE-EPI sequence. Magn Reson Med 68:932–946

    Article  PubMed  Google Scholar 

  32. de Bever JT, Odéen H, Hofstetter LW, Parker DL (2018) Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition. Magn Reson Med 79:1515–1524

    Article  PubMed  Google Scholar 

  33. Bitton RR, Kaye E, Dirbas FM, Daniel BL, Pauly KB (2012) Toward MR-guided high intensity focused ultrasound for presurgical localization: Focused ultrasound lesions in cadaveric breast tissue. J Magn Reson Imaging 35:1089–1097

    Article  PubMed  Google Scholar 

  34. Bour P, Marquet F, Ozenne V, Toupin S, Dumont E, Aubry J-F, Lepetit-Coiffe M, Quesson B (2017) Real-time monitoring of tissue displacement and temperature changes during MR-guided high intensity focused ultrasound. Magn Reson Med 78:1911–1921

    Article  PubMed  Google Scholar 

  35. Ilovitsh A, Fite BZ, Ilovitsh T, Ferrara KW (2019) Acoustic radiation force imaging using a single-shot spiral readout. Phys Med Biol 64:125004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiao Y, Zou C, Chuanli C, Tie C, Wan Q, Peng H, Liang D, Liu X, Zheng H (2020) Simultaneous acoustic radiation force imaging and MR thermometry based on a coherent echo-shifted sequence. Quant Imaging Med Surg 10:1823–1836

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vappou J, Bour P, Marquet F, Ozenne V, Quesson B (2018) MR-ARFI-based method for the quantitative measurement of tissue elasticity: application for monitoring HIFU therapy. Phys Med Biol 63:095018

    Article  PubMed  Google Scholar 

  38. Schmidt JL, Tweten DJ, Benegal AN, Walker CH, Portnoi TE, Okamoto RJ, Garbow JR, Bayly PV (2016) Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue. J Biomech 49:1042–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaye EA, Pauly KB (2013) Adapting MRI acoustic radiation force imaging for in vivo human brain focused ultrasound applications. Magn Reson Med 69:724–733

    Article  PubMed  Google Scholar 

  40. Dadakova T, Krafft AJ, Özen AC, Bock M (2018) Optimization of acoustic radiation force imaging: influence of timing parameters on sensitivity. Magn Reson Med 79:981–986

    Article  CAS  PubMed  Google Scholar 

  41. D’Errico J (2012) Matlab functions: fminsearchbnd, fminsearchcon (https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon) MATLAB Central File Exchange

  42. Farrer AI, Odéen H, de Bever J, Coats B, Parker DL, Payne A, Christensen DA (2015) Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS. J Ther Ultrasound 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cabras P, Auloge P, Bing F, Rao PP, Hoarau S, Dumont E, Durand A, Maurin B, Wach B, Cuvillon L, Breton E, Gangi A, Vappou J (2022) A new versatile MR-guided high-intensity focused ultrasound (HIFU) device for the treatment of musculoskeletal tumors. Sci Rep 12:9095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lefebvre P, Tse Ve Koon K, Brusseau E, Nicolle S, Palierne J-F, Lambert S, Grenier D (2016) Comparison of Viscoelastic Property Characterization of Plastisol Phantoms with Magnetic Resonance Elastography and High-Frequency Rheometry. In: Annu Int Conf IEEE Eng Med Biol Soc. pp 1216–1219

  45. Vappou J, Breton E, Choquet P, Goetz C, Willinger R, Constantinesco A (2007) Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement. Magn Reson Mater Phy 20:273

    Article  Google Scholar 

  46. Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, Ehman RL, Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF (2000) Tissue characterization using magnetic resonance elastography: preliminary results\ast. Phys Med Biol 45:1579–1590

    Article  CAS  PubMed  Google Scholar 

  47. Sapin-de Brosses E, Gennisson J-L, Pernot M, Fink M, Tanter M (2010) Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Phys Med Biol 55:1701–1718

    Article  CAS  PubMed  Google Scholar 

  48. Hofstetter LW, Odéen H, Bolster BD, Mueller A, Christensen D, Payne A, Parker DL (2019) Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding. Magn Reson Med 81:3153–3167

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hofstetter LW, Odéen H, Bolster BD, Christensen DA, Payne A, Parker DL (2021) Magnetic resonance shear wave elastography using transient acoustic radiation force excitations and sinusoidal displacement encoding. Phys Med Biol 66:055027

    Article  CAS  Google Scholar 

  50. Liu Y, Liu J, Fite BZ, Foiret J, Ilovitsh A, Leach JK, Dumont E, Caskey CF, Ferrara KW (2017) Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity. Phys Med Biol 62:4083–4106

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ishak O, Breton E, Choquet K, Josset A, Cabras P, Vappou J (2023) Monitoring MR-guided high intensity focused ultrasound therapy using transient supersonic shear wave MR-elastography. Phys Med Biol 68(3):035013. https://doi.org/10.1088/1361-6560/acac5e

    Article  Google Scholar 

  52. Chatelin S, Charpentier I, Corbin N, Meylheuc L, Vappou J (2016) An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues. Phys Med Biol 61:5000–5019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has benefitted from funding of the FUI (Fonds Unique Interministériel, BPI France) for the UFOGUIDE project, and the ANR (Agence Nationale de la Recherche) French national program “Investissements d’Avenir” for the LABEX-CAMI (ANR-11-LABX-0004), the IHU Strasbourg (Institute of Image Guided Surgery, ANR-10-IAHU-0002) and the LabCom TechnoFUS lab (ANR-21-LCV3-0007-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karine Choquet or Elodie Breton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The in vivo experiment was led following the 3R principle for more humane research, and in following local legal ethics regulation (registered project APAFIS #14092-2018031513247711v1). The animal was maintained under gaseous anaesthesia during imaging (1.8% isoflurane), with appropriate pain management (Propofol 1mg/kg) during HIFU. At the end of the experiment, the animal was euthanized through anaesthetics overdose (10 min, 5% isoflurane) coupled to IV injection of saturated KCl solution (0.5 mL/kg).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 576 KB)

Supplementary file2 (MP4 1342 KB)

Supplementary file3 (MP4 1130 KB)

Supplementary file4 (MP4 1870 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choquet, K., Vappou, J., Cabras, P. et al. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) for the monitoring of High Intensity Focused Ultrasound (HIFU) ablation in anisotropic tissue. Magn Reson Mater Phy 36, 737–747 (2023). https://doi.org/10.1007/s10334-023-01062-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-023-01062-6

Keywords

Navigation