Skip to main content
Log in

Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances

  • Review
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique’s shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abragam A (1961) The principles of nuclear magnetism. University Press, Oxford

    Google Scholar 

  2. Hirsch ML, Kalechofsky N, Belzer A, Rosay M, Kempf JG (2015) Brute-force hyperpolarization for NMR and MRI. J Am Chem Soc 137:8428–8434

    CAS  PubMed  Google Scholar 

  3. Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642

    CAS  Google Scholar 

  4. Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315

    Google Scholar 

  5. Abragam A, Goldman M (1978) Principles of dynamic nuclear-polarization. Rep Prog Phys 41:395–467

    CAS  Google Scholar 

  6. Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411

    CAS  Google Scholar 

  7. Carver TR, Slichter CP (1953) Polarization of nuclear spins in metals. Phys Rev 92:212

    CAS  Google Scholar 

  8. van den Brandt B, Hautle P, Konter JA, Kurdzesau F (2008) Dynamic nuclear polarization—from polarized targets to metabolic imaging. Appl Magn Reson 34:475–481

    Google Scholar 

  9. Becerra LR, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG (1993) Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys Rev Lett 71:3561–3564

    CAS  PubMed  Google Scholar 

  10. Gerfen GJ, Becerra LR, Hall DA, Griffin RG, Temkin RJ, Singel DJ (1995) High frequency (140 GHz) dynamic nuclear polarization: polarization transfer to a solute in frozen aqueous solution. J Chem Phys 102:9494–9497

    CAS  Google Scholar 

  11. Griesinger C, Bennati M, Vieth HM, Luchinat C, Parigi G, Höfer P, Engelke F, Glaser SJ, Denysenkov V, Prisner TF (2012) Dynamic nuclear polarization at high magnetic fields in liquids. Prog Nucl Magn Reson Spectrosc 64:4–28

    CAS  PubMed  Google Scholar 

  12. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ardenkjaer-Larsen JH (2016) On the present and future of dissolution-DNP. J Magn Reson 264:3–12

    CAS  PubMed  Google Scholar 

  14. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA (2018) Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13$C]Pyruvate. Sci Transl Med 5:198ra108

    Google Scholar 

  15. van Heeswijk RB, Uffmann K, Comment A, Kurdzesau F, Perazzolo C, Cudalbu C, Jannin S, Konter JA, Hautle P, van den Brandt B, Navon G, van der Klink JJ, Gruetter R (2009) Hyperpolarized 6$Li as a sensor of nanomolar contrast agents. Magn Reson Med 61:1489–1493

    PubMed  PubMed Central  Google Scholar 

  16. Bowen S, Hilty C (2008) Time-resolved dynamic nuclear polarization enhanced NMR spectroscopy. Angew Chem 120:5313–5315

    Google Scholar 

  17. Lee Y, Heo GS, Zeng H, Wooley KL, Hilty C (2013) Detection of living anionic species in polymerization reactions using hyperpolarized NMR. J Am Chem Soc 135:4636–4639

    CAS  PubMed  Google Scholar 

  18. Lerche MH, Jensen PR, Karlsson M, Meier S (2015) NMR insights into the inner workings of living cells. Anal Chem 87:119–132

    CAS  PubMed  Google Scholar 

  19. Harris T, Eliyahu G, Frydman L, Degani H (2009) Kinetics of hyperpolarized C-13(1)-pyruvate transport and metabolism in living human breast cancer cells. Proc Natl Acad Sci USA 106:18131–18136

    CAS  PubMed  Google Scholar 

  20. Pinon AC, Capozzi A, Ardenkjær-Larsen JH (2020) Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun Chem 3:57

    CAS  Google Scholar 

  21. Olsen G, Markhasin E, Szekely O, Bretschneider C, Frydman L (2016) Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR. J Magn Reson 264:49–58

    CAS  PubMed  Google Scholar 

  22. Szekely O, Olsen GL, Felli IC, Frydman L (2018) High-resolution 2D NMR of disordered proteins enhanced by hyperpolarized water. Anal Chem 90:6169–6177

    CAS  PubMed  Google Scholar 

  23. Harris T, Szekely O, Frydman L (2014) On the potential of hyperpolarized water in biomolecular NMR studies. J Phys Chem B 118:3281–3290

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chappuis Q, Milani J, Vuichoud B, Bornet A, Gossert AD, Bodenhausen G, Jannin S (2015) Hyperpolarized water to study protein-ligand interactions. J Phys Chem Lett 6:1674–1678

    CAS  PubMed  Google Scholar 

  25. Wenckebah WTh (2016) Essentials of dynamic nuclear polarization. Ridderprint B.V, Ridderkerk

    Google Scholar 

  26. de Boer W (1976) Dynamic orientation of nuclei at low temperatures. J Low Temp Phys 22:185–212

    Google Scholar 

  27. de Boer W, Borghini M, Morimoto K, Niinikoski TO, Udo F (1974) Dynamic polarization of protons, deuterons, and carbon-13 nuclei: thermal contact between nuclear spins and an electron spin-spin interaction reservoir. J Low Temp Phys 15:249–267

    Google Scholar 

  28. Wind RA, Duijvestijn MJ, van der Lugt C, Manenschijn A, Vriend J (1985) Applications of dynamic nuclear polarization in 13$C NMR in solids. Prog Nucl Magn Reson Spectrosc 17:33–67

    CAS  Google Scholar 

  29. Borghini M (1971) Mechanism of nuclear dynamic polarization by electron-nucleus dipolar coupling in solids. European Organization for Nuclear Research, Geneva (Switzerland)

    Google Scholar 

  30. Borghini M (1968) Spin-temperature model of nuclear dynamic polarization using free radicals. Phys Rev Lett 20:419

    CAS  Google Scholar 

  31. Hwang CF, Hill DA (1967) Phenomenological model for the new effect in dynamic polarization. Phys Rev Lett 19:1011–1014

    CAS  Google Scholar 

  32. Guarin D, Marhabaie S, Rosso A, Abergel D, Bodenhausen G, Ivanov KL, Kurzbach D (2017) Characterizing thermal mixing dynamic nuclear polarization via cross-talk between spin reservoirs. J Phys Chem Lett 8:5531–5536

    CAS  PubMed  Google Scholar 

  33. Hurd RE, Yen Y-F, Chen A, Ardenkjaer-Larsen J-H (2012) Hyperpolarized 13$C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging 36:1314–1328

    PubMed  Google Scholar 

  34. Heckmann J, Meyer W, Radtke E, Reicherz G (2006) Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials. Phys Rev B 74:134418

    Google Scholar 

  35. Johanneson H, Macholl S, Ardenkjaer-Larsen JH (2009) Dynamic nuclear polarization of [1-13$C]pyruvic acid at 4.6 T. J Magn Reson 197:167–175

    Google Scholar 

  36. Cheng T, Capozzi A, Takado Y, Balzan R, Comment A (2013) Over 35% liquid-state 13$C polarization obtained via dissolution dynamic nuclear polarization at 7 T and 1 K using ubiquitous nitroxyl radicals. Phys Chem Chem Phys 15:20819–20822

    CAS  PubMed  Google Scholar 

  37. Jannin S, Bornet A, Melzi R, Bodenhausen G (2012) High field dynamic nuclear polarization at 6.7 T: 13$C polarization above 70% within 20 min. Chem Phys Lett 549:99–102

    CAS  Google Scholar 

  38. Ardenkjaer-Larsen J-H, Leach AM, Clarke N, Urbahn J, Anderson D, Skloss TW (2011) Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 24:927–932

    CAS  PubMed  Google Scholar 

  39. Comment A, Merritt ME (2014) Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry 53:7333–7357

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Capozzi A, Patel S, Wenckebach WT, Karlsson M, Lerche MH, Ardenkjær-Larsen JH (2019) Gadolinium effect at high-magnetic-field DNP: 70% 13 C polarization of [U- 13 C] glucose using trityl. J Phys Chem Lett 10:3420–3425

    CAS  PubMed  Google Scholar 

  41. Friesen-Waldner L, Chen A, Mander W, Scholl TJ, McKenzie CA (2012) Optimisation of dynamic nuclear polarisation of [1-(13)C] pyruvate by addition of gadolinium-based contrast agents. J Magn Reson 223:85–89

    CAS  PubMed  Google Scholar 

  42. Lumata L, Merritt ME, Malloy CR, Sherry AD, Kovacs Z (2012) Impact of Gd3 + on DNP of [1-13$C] pyruvate doped with trityl OX063, BDPA, or 4-oxo-TEMPO. J Phys Chem A 116:5129–5138

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bornet A, Milani J, Vuichoud B, Linde AJP, Bodenhausen G, Jannin S (2014) Microwave frequency modulation to enhance dissolution dynamic nuclear polarization. Chem Phys Lett 602:63–67

    CAS  Google Scholar 

  44. Kiselev YF, Niinikoski TO (1996) EPR and dynamic nuclear polarization with frequency modulation. The Netherlands, Amsterdam, pp 389–391

    Google Scholar 

  45. Adeva B, al. (1996) Large enhancement of deuteron polarization with frequency modulated microwaves. Nucl Instrum Methods Phys Res Sect 372:339–343

    CAS  Google Scholar 

  46. Bornet A, Melzi R, Linde AJP, Hautle P, van den Brandt B, Jannin S, Bodenhausen G (2003) Boosting dissolution dynamic nuclear polarization by cross polarization. J Phys Chem Lett 4:111–114

    Google Scholar 

  47. Kurdzesau F, van den Brandt B, Comment A, Hautle P, Jannin S, van der Klink JJ, Konter JA (2008) Dynamic nuclear polarization of small labelled molecules in frozen water-alcohol solutions. J Phys Appl Phys. https://doi.org/10.1088/0022-3727/41/15/155506

    Article  Google Scholar 

  48. Milani J, Vuichoud B, Bornet A, Miéville P, Mottier R, Jannin S, Bodenhausen G (2015) A magnetic tunnel to shelter hyperpolarized fluids. Rev Sci Instrum 86:024101

    PubMed  Google Scholar 

  49. Ardenkjær-Larsen JH, Bowen S, Petersen JR, Rybalko O, Vinding MS, Ullisch M, Nielsen NC (2018) Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T and 10.1 T. Magn Reson Med 81(3):2184–2194

    PubMed  Google Scholar 

  50. Cheng T, Gaunt AP, Marco-Rius I, Gehrung M, Chen AP, Klink JJ, Comment A (2020) A multisample 7 T dynamic nuclear polarization polarizer for preclinical hyperpolarized MR. NMR Biomed. https://doi.org/10.1002/nbm.4264

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yoshihara HAI, Can E, Karlsson M, Lerche MH, Schwitter J, Comment A (2016) High-field dissolution dynamic nuclear polarization of [1-C-13]pyruvic acid. Phys Chem Chem Phys 18:12409–12413

    CAS  PubMed  Google Scholar 

  52. Lama B, Collins JHP, Downes D, Smith AN, Long JR (2016) Expeditious dissolution dynamic nuclear polarization without glassing agents: expeditious dissolution DNP without glassing agents. NMR Biomed 29:226–231

    CAS  PubMed  Google Scholar 

  53. Stephenson JL (1956) Ice crystal growth during the rapid freezing of tissues. J Biophys Biochem Cytol 2:45–52

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hall RS, Board SJ, Clare AJ, Duffey RB, Playle TS, Poole DH (1969) Inverse leidenfrost phenomenon. Nature 224:266–267

    CAS  Google Scholar 

  55. Cavagna A (2009) Supercooled liquids for pedestrians. Phys Rep 476:51–124

    CAS  Google Scholar 

  56. Haida O, Suga H, Seki S (1977) Calorimetric study of the glassy state XII. Plural glass-transition phenomena of ethanol. J Chem Thermodyn 9:1133–1148

    CAS  Google Scholar 

  57. Lumata L, Merritt ME, Kovacs Z (2013) Influence of deuteration in the glassing matrix on 13$C dynamic nuclear polarization. Phys Chem Chem Phys 15:7032–7035

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lumata L, Kovacs Z, Sherry AD, Malloy C, Hill S, van Tol J, Yu L, Song L, Merritt ME (2013) Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP. Phys Chem Chem Phys 15:9800–9807

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Miéville P, Ahuja P, Sarkar R, Jannin S, Vasos PR, Gerber-Lemaire S, Mishkovsky M, Comment A, Gruetter R, Ouari O et al (2010) Scavenging free radicals to preserve enhancement and extend relaxation times in NMR using dynamic nuclear polarization. Angew Chem 122:6318–6321

    Google Scholar 

  60. Cheng T, Mishkovsky M, Junk MJN, Münnemann K, Comment A (2016) Producing radical-free hyperpolarized perfusion agents for in vivo magnetic resonance using spin-labeled thermoresponsive hydrogel. Macromol Rapid Commun 37:1074–1078

    CAS  PubMed  Google Scholar 

  61. Vuichoud B, Bornet A, de Nanteuil F, Milani J, Canet E, Ji X, Mieville P, Weber E, Kurzbach D, Flamm A, Konrat R, Gossert AD, Jannin S, Bodenhausen G (2016) Filterable agents for hyperpolarization of water, metabolites, and proteins. Chem Eur J 22:14696–14700

    CAS  PubMed  Google Scholar 

  62. Gajan D, Bornet A, Vuichoud B, Milani J, Melzi R, van Kalkeren HA, Veyre L, Thieuleux C, Conley MP, Gruning WR, Schwarzwalder M, Lesage A, Coperet C, Bodenhausen G, Emsley L, Jannin S (2014) Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization. Proc Natl Acad Sci 111:14693–14697

    CAS  PubMed  Google Scholar 

  63. Ji X, Bornet A, Vuichoud B, Milani J, Gajan D, Rossini AJ, Emsley L, Bodenhausen G, Jannin S (2017) Transportable hyperpolarized metabolites. Nat Commun. https://doi.org/10.1038/Ncomms13975

    Article  PubMed  PubMed Central  Google Scholar 

  64. Capozzi A, Cheng T, Boero G, Roussel C, Comment A (2017) Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates. Nat Commun 8:15757

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Eichhorn TR, Takado Y, Salameh N, Capozzi A, Cheng T, Hyacinthe JN, Mishkovsky M, Roussel C, Comment A (2013) Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging. Proc Natl Acad Sci USA 110:18064–18069

    CAS  PubMed  Google Scholar 

  66. van der Wel PCA, Hu K-N, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846

    PubMed  Google Scholar 

  67. Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Copéret C, Lesage A, Emsley L (2012) Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Am Chem Soc 134:16899–16908

    CAS  PubMed  Google Scholar 

  68. Pinon AC, Schlagnitweit J, Berruyer P, Rossini AJ, Lelli M, Socie E, Tang M, Pham T, Lesage A, Schantz S, Emsley L (2017) Measuring nano- to microstructures from relayed dynamic nuclear polarization NMR. J Phys Chem C 121:15993–16005

    CAS  Google Scholar 

  69. Pinon AC (2018) Spin diffusion in dynamic nuclear polarization nuclear magnetic resonance. https://doi.org/10.5075/EPFL-THESIS-8519

  70. Pines A, Gibby MG, Waugh JS (1972) Proton-enhanced nuclear induction spectroscopy 13$C chemical shielding anisotropy in some organic solids. Chem Phys Lett 15:373–376

    CAS  Google Scholar 

  71. Suter D, Ernst RR (1985) Spin diffusion in resolved solid-state NMR spectra. Phys Rev B 32:5608–5627

    CAS  Google Scholar 

  72. Szeverenyi NM, Sullivan MJ (1969) Maciel GE (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475

    Google Scholar 

  73. Silverio DL, van Kalkeren HA, Ong T-C, Baudin M, Yulikov M, Veyre L, Berruyer P, Chaudhari S, Gajan D, Baudouin D, Cavaillès M, Vuichoud B, Bornet A, Jeschke G, Bodenhausen G, Lesage A, Emsley L, Jannin S, Thieuleux C, Copéret C (2017) Tailored polarizing hybrid solids with nitroxide radicals localized in mesostructured silica walls. Helv Chim Acta 100:e1700101

    Google Scholar 

  74. Capozzi A, Hyacinthe JN, Cheng T, Eichhorn TR, Boero G, Roussel C, van der Klink JJ, Comment A (2015) Photoinduced nonpersistent radicals as polarizing agents for X-nuclei dissolution dynamic nuclear polarization. J Phys Chem C 119:22632–22639

    CAS  Google Scholar 

  75. Capozzi A, Karlsson M, Petersen JR, Lerche MH, Ardenkjaer-Larsen JH (2018) Liquid-state 13 C polarization of 30% through photoinduced nonpersistent radicals. J Phys Chem C 122:7432–7443

    CAS  Google Scholar 

  76. Capozzi A, Patel S, Gunnarsson CP, Marco-Rius I, Comment A, Karlsson M, Lerche MH, Ouari O, Ardenkjaer-Larsen JH (2019) Efficient hyperpolarization of U-(13) C-glucose using narrow-line UV-generated labile free radicals. Angew Chem Int Ed Engl 58:1334–1339

    CAS  PubMed  Google Scholar 

  77. Marco-Rius I, Cheng T, Gaunt AP, Patel S, Kreis F, Capozzi A, Wright AJ, Brindle KM, Ouari O, Comment A (2018) Photogenerated radical in phenylglyoxylic acid for in vivo hyperpolarized (13)C MR with photosensitive metabolic substrates. J Am Chem Soc 140:14455–14463

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Carravetta M, Johannessen OG, Levitt MH (2004) Beyond the T 1 Limit: singlet nuclear spin states in low magnetic fields. Phys Rev Lett 92:153003

    PubMed  Google Scholar 

  79. Carravetta M, Levitt MH (2004) Long-lived nuclear spin states in high-field solution NMR. J Am Chem Soc 126:6228–6229

    CAS  PubMed  Google Scholar 

  80. Vasos PR, Comment A, Sarkar R, Ahuja P, Jannin S, Ansermet J-P, Konter JA, Hautle P, van den Brandt B, Bodenhausen G (2009) Long-lived states to sustain hyperpolarized magnetization. Proc Natl Acad Sci 106:18469–18473

    CAS  PubMed  Google Scholar 

  81. Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov K, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S (2020) Singlet-Contrast. Magn Reson Imaging. https://doi.org/10.26434/chemrxiv.12863639.v1

    Article  Google Scholar 

  82. Dubroca T, Wi S, van Tol J, Frydman L, Hill S (2019) Large volume liquid state scalar Overhauser dynamic nuclear polarization at high magnetic field. Phys Chem Chem Phys 21:21200–21204

    CAS  PubMed  Google Scholar 

  83. Denysenkov V, Prandolini MJ, Gafurov M, Sezer D, Endeward B, Prisner TF (2010) Liquid state DNP using a 260 GHz high power gyrotron. Phys Chem Chem Phys 12:5786

    CAS  PubMed  Google Scholar 

  84. Bachert P, Brunner H, Hausser KH, Colpa JP (1984) Microwave-induced optical nuclear polarization (MI ONP) of benzophenone in dibromodiphenylether. Chem Phys 91:435–447

    CAS  Google Scholar 

  85. Bargon J, Fischer H, Johnsen U (1967) Kernresonanz-Emissionslinien während rascher Radikalreaktionen. Z Für Naturforschung A 22:1551–1555

    CAS  Google Scholar 

  86. Ward HR, Lawler RG (1967) Nuclear magnetic resonance emission and enhanced absorption in rapid organometallic reactions. J Am Chem Soc 89:5518–5519

    CAS  Google Scholar 

  87. Iinuma M, Takahashi Y, Shaké I, Oda M, Masaike A, Yabuzaki T, Shimizu HM (2000) High proton polarization by microwave-induced optical nuclear polarization at 77 K. Phys Rev Lett 84:171–174

    CAS  PubMed  Google Scholar 

  88. Eichhorn TR, Haag M, van den Brandt B, Hautle P, Wenckebach WTh (2013) High proton spin polarization with DNP using the triplet state of pentacene-. Chem Phys Lett 555:296–299

    CAS  Google Scholar 

  89. Eichhorn TR, Niketic N, van den Brandt B, Filges U, Panzner T, Rantsiou E, Wenckebach WTh, Hautle P (2014) Proton polarization above 70% by DNP using photo-excited triplet states, a first step towards a broadband neutron spin filter. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 754:10–14

    CAS  Google Scholar 

  90. Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M (2014) Room temperature hyperpolarization of nuclear spins in bulk. Proc Natl Acad Sci 111:7527–7530

    CAS  PubMed  Google Scholar 

  91. Tateishi K, Negoro M, Kagawa A, Kitagawa M (2013) Dynamic nuclear polarization with photoexcited triplet electrons in a glassy matrix. Angew Chem Int Ed 52:13307–13310

    CAS  Google Scholar 

  92. Kouno H, Orihashi K, Nishimura K, Kawashima Y, Tateishi K, Uesaka T, Kimizuka N, Yanai N (2020) Triplet dynamic nuclear polarization of crystalline ice using water-soluble polarizing agents. Chem Commun 56:3717–3720

    CAS  Google Scholar 

  93. Negoro M, Kagawa A, Tateishi K, Tanaka Y, Yuasa T, Takahashi K, Kitagawa M (2018) Dissolution dynamic nuclear polarization at room temperature using photoexcited triplet electrons. J Phys Chem A 122:4294–4297

    CAS  PubMed  Google Scholar 

  94. Keshari KR, Kurhanewicz J, Macdonald JM, Wilson DM (2012) Generating contrast in hyperpolarized 13C MRI using ligand–receptor interactions. The Analyst 137:3427

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Can TV, Weber RT, Walish JJ, Swager TM, Griffin RG (2017) Frequency-swept integrated solid effect. Angew Chem Int Ed 56:6744–6748

    CAS  Google Scholar 

  96. Henstra A, Dirksen P, Wenckebach WTh (1988) Enhanced dynamic nuclear polarization by the integrated solid effect. Phys Lett A 134:134–136

    CAS  Google Scholar 

  97. Quan Y, van den Brandt B, Kohlbrecher J, Wenckebach WTh, Hautle P (2019) A transportable neutron spin filter. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 921:22–26

    CAS  Google Scholar 

  98. King JP, Jeong K, Vassiliou CC, Shin CS, Page RH, Avalos CE, Wang H-J, Pines A (2015) Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond. Nat Commun 6:8965

    PubMed  PubMed Central  Google Scholar 

  99. Comment A, van den Brandt B, Uffmann K, Kurdzesau F, Jannin S, Konter JA, Hautle P, Wenckebach WT, Gruetter R, van der Klink JJ (2016) Principles of operation of a DNP prepolarizer coupled to a rodent MRI scanner. Appl Magn Reson 34:313–319

    Google Scholar 

  100. Comment A, van den Brandt B, Uffmann K, Kurdzesau F, Jannin S, Konter JA, Hautle P, Wenckebach WTH, Gruetter R, van der Klink JJ (2007) Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts Magn Reson Part B-Magn Reson Eng 31B:255–269

    CAS  Google Scholar 

  101. Jahnig F, Kwiatkowski G, Dapp A, Hunkeler A, Meier BH, Kozerke S, Ernst M (2017) Dissolution DNP using trityl radicals at 7 T field. Phys Chem Chem Phys 19:19196–19204

    CAS  PubMed  Google Scholar 

  102. Jannin S, Comment A, Kurdzesau F, Konter JA, Hautle P, van den Brandt B, van der Klink JJ (Jun 28) A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. J Chem Phys 128:241102 1–4

  103. Ardenkjaer‐Larsen JH (2017) Cryogen‐free dissolution dynamic nuclear polarization at 10 T (and other instrumental developments for dDNP). Asilomar, p 30

  104. Bowen S, Rybalko O, Petersen JR, Ardenkaer-Larsen JH (2017) Multi‐field cryogen free dissolution‐DNP at 3.35, 6.70, and 10.05 T

  105. Baudin M, Vuichoud B, Bornet A, Bodenhausen G, Jannin S (2018) A cryogen-consumption-free system for dynamic nuclear polarization at 9.4 T. J Magn Reson 294:115–121

    CAS  PubMed  Google Scholar 

  106. Bornet A, Pinon A, Jhajharia A, Baudin M, Ji X, Emsley L, Bodenhausen G, Ardenkjaer-Larsen JH, Jannin S (2016) Microwave-gated dynamic nuclear polarization. Phys Chem Chem Phys 18:30530–30535

    CAS  PubMed  Google Scholar 

  107. Batel M, Krajewski M, Weiss K, With O, Däpp A, Hunkeler A, Gimersky M, Pruessmann KP, Boesiger P, Meier BH, Kozerke S, Ernst M (2012) A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system. J Magn Reson 214:166–174

    CAS  PubMed  Google Scholar 

  108. Capozzi A, Kilund, J., Karlsson M, Lerche MH, Ardenkaer-Larsen JH (2020) Transportable hyperpolarized glucose samples: towards remote dissolution DNP. ISMRM 2020 New Front. Hyperpolarization Program Number 0693

  109. Bowen S, Hilty C (2010) Rapid sample injection for hyperpolarized NMR spectroscopy. Phys Chem Chem Phys 12:5766–5770

    CAS  PubMed  Google Scholar 

  110. Kouřil K, Kouřilová H, Bartram S, Levitt MH, Meier B (2019) Scalable dissolution-dynamic nuclear polarization with rapid transfer of a polarized solid. Nat Commun 10:1733

    PubMed  PubMed Central  Google Scholar 

  111. Gadian DG, Panesar KS, Perez Linde AJ, Horsewill AJ, Köckenberger W, Owers-Bradley JR (2012) Preparation of highly polarized nuclear spin systems using brute-force and low-field thermal mixing. Phys Chem Chem Phys 14:5397

    CAS  PubMed  Google Scholar 

  112. Peat DT, Hirsch ML, Gadian DG, Horsewill AJ, Owers-Bradley JR, Kempf JG (2016) Low-field thermal mixing in [1- 13 C] pyruvic acid for brute-force hyperpolarization. Phys Chem Chem Phys 18:19173–19182

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish National Research Foundation (DNRF124), the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 713683 (COFUNDfellowsDTU), and the Swiss National Fund under the SPARK Grant Agreement No. CRSK-2_190547.

Author information

Authors and Affiliations

Authors

Contributions

JA review article conception; ACP drafting of manuscript; AC and JA critical revision.

Corresponding author

Correspondence to Jan Henrik Ardenkjær-Larsen.

Ethics declarations

Conflict of interest

JA is an employee of GE Healthcare and the owner of the company Polarize. We have no further potential conflicts of interest. This review does not involve any human participants or animal research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinon, A.C., Capozzi, A. & Ardenkjær-Larsen, J.H. Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. Magn Reson Mater Phy 34, 5–23 (2021). https://doi.org/10.1007/s10334-020-00894-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00894-w

Keywords

Navigation