Skip to main content

Advertisement

Log in

Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To design, develop and evaluate an automated multi-atlas method for segmentation and volume quantification of gluteus maximus from Dixon and T1-weighted images.

Materials and methods

The multi-atlas segmentation method uses an atlas library constructed from 15 Dixon MRI scans of healthy subjects. A non-rigid registration between each atlas and the target, followed by majority voting label fusion, is used in the segmentation. We propose a region of interest (ROI) to standardize the measurement of muscle bulk. The method was evaluated using the dice similarity coefficient (DSC) and the relative volume difference (RVD) as metrics, for Dixon and T1-weighted target images.

Results

The mean(± SD) DSC was 0.94 ± 0.01 for Dixon images, while 0.93 ± 0.02 for T1-weighted. The RVD between the automated and manual segmentation had a mean(± SD) value of 1.5 ± 4.3% for Dixon and 1.5 ± 4.8% for T1-weighted images. In the muscle bulk ROI, the DSC was 0.95 ± 0.01 and the RVD was 0.6 ± 3.8%.

Conclusion

The method allows an accurate fully automated segmentation of gluteus maximus for Dixon and T1-weighted images and provides a relatively accurate volume measurement in shorter times (~ 20 min) than the current gold-standard manual segmentations (2 h). Visual inspection of the segmentation would be required when higher accuracy is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson FC, Pandy MG (2003) Individual muscle contributions to support in normal walking. Gait Posture 17:159–169

    Article  PubMed  Google Scholar 

  2. Bartlett JL, Sumner B, Ellis RG, Kram R (2014) Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing. Am J Phys Anthropol 153:124–131

    Article  PubMed  Google Scholar 

  3. Lieberman DE, Raichlen DA, Pontzer H, Bramble DM, Cutright-Smith E (2006) The human gluteus maximus and its role in running. J Exp Biol 209:444–454

    Article  Google Scholar 

  4. Ward SR, Winters TM, Blemker SS (2010) The architectural design of the gluteal muscle group: implications for movement and rehabilitation. J Orthop Sport Phys Ther 40:95–102

    Article  Google Scholar 

  5. Zacharias A, Pizzari T, English DJ, Kapakoulakis T, Green RA (2016) Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthr Cartil 24:1727–1735

    Article  CAS  Google Scholar 

  6. Grimaldi A, Richardson C, Stanton W, Durbridge G, Donnelly W, Hides J (2009) The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles. Man Ther 14:605–610

    Article  PubMed  Google Scholar 

  7. Uemura K, Takao M, Sakai T, Nishii T, Sugano N (2016) Volume increases of the gluteus maximus, gluteus medius, and thigh muscles after hip arthroplasty. J Arthroplasty 31:906–912.e1

    Article  PubMed  Google Scholar 

  8. Smith MMF, Bonacci J, Mendis MD, Christie C, Rotstein A, Hides JA (2017) Gluteus medius activation during running is a risk factor for season hamstring injuries in elite footballers. J Sci Med Sport 20:159–163

    Article  Google Scholar 

  9. Sakamaki M, Bemben MG, Abe T (2011) Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow. J Sports Sci Med 10:338–340

    PubMed  PubMed Central  Google Scholar 

  10. Mendieta CG, Sood A (2018) Classification system for gluteal evaluation revisited. Clin Plast Surg. https://doi.org/10.1016/j.cps.2017.12.013

    Article  PubMed  Google Scholar 

  11. O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) Strong relationships exist between muscle volume, joint power and whole-body external mechanical power in adults and children. Exp Physiol 94:731–738

    Article  PubMed  Google Scholar 

  12. Akagi R, Suzuki M, Kawaguchi E, Miyamoto N, Yamada Y, Ema R (2018) Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch Gerontol Geriatr 75:185–190

    Article  PubMed  Google Scholar 

  13. Dawes H, Smith C, Collett J, Wade D, Howells K, Ramsbottom R, Izadi H, Sackley C (2005) A pilot study to investigate explosive leg extensor power and walking performance after stroke. J Sports Sci Med 4:556–562

    PubMed  PubMed Central  Google Scholar 

  14. Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA (1992) Leg extensor power and functional performance in very old men and women. Clin Sci (Lond) 82:321–327

    Article  CAS  Google Scholar 

  15. Cronin J, Sleivert G (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sport Med 35:213–234

    Article  Google Scholar 

  16. Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31:4–18

    Article  PubMed  Google Scholar 

  17. Xiang QS, An L (1997) Water-fat imaging with direct phase encoding. J Magn Reson Imaging 7:1002–1015

    Article  CAS  PubMed  Google Scholar 

  18. Hernando D, Liang Z-P, Kellman P (2010) Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med 64:811–822

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  PubMed  Google Scholar 

  20. Wokke BH, Bos C, Reijnierse M, Van Rijswijk CS, Eggers H, Webb A, Verschuuren JJ, Kan HE (2013) Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging 38:619–624

    Article  PubMed  Google Scholar 

  21. Barnouin Y, Butler-Browne G, Voit T, Reversat D, Azzabou N, Leroux G, Behin A, McPhee JS, Carlier PG, Hogrel JY (2014) Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. J Magn Reson Imaging 40:239–247

    Article  PubMed  Google Scholar 

  22. Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569

    Article  PubMed  Google Scholar 

  23. Kovanlikaya A, Mittelman SD, Ward A, Geffner ME, Dorey F, Gilsanz V (2005) Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr Radiol 35:601–607

    Article  PubMed  Google Scholar 

  24. Belavý DL, Miokovic T, Rittweger J, Felsenberg D (2011) Estimation of changes in volume of individual lower-limb muscles using magnetic resonance imaging (during bed-rest). Physiol Meas 32:35–50

    Article  PubMed  Google Scholar 

  25. Nordez A, Jolivet E, Südhoff I, Bonneau D, De Guise JA, Skalli W (2009) Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging 30:1116–1123

    Article  PubMed  Google Scholar 

  26. Voronov AV (2003) Anatomical cross-sectional areas and volumes of the muscles of the lower extremities. Hum Physiol 29:201–211

    Article  Google Scholar 

  27. Mersmann F, Bohm S, Schroll A, Arampatzis A (2014) Validation of a simplified method for muscle volume assessment. J Biomech 47:1348–1352

    Article  PubMed  Google Scholar 

  28. Pedoia V, Majumdar S, Link TM (2016) Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phy 29:207–221

    Article  CAS  Google Scholar 

  29. Baudin PY, Azzabou N, Carlier PG, Paragios N (2012) Automatic skeletal muscle segmentation through random walks and graph-based seed placement. In: Proceedings—international symposium on biomedical imaging. IEEE, pp 1036–1039

  30. Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G (2016) Automatic muscle and fat segmentation in the thigh from T 1-weighted MRI. J Magn Reson Imaging 43:601–610

    Article  PubMed  Google Scholar 

  31. Brunner G, Nambi V, Yang E, Kumar A, Virani SS, Kougias P, Shah D, Lumsden A, Ballantyne CM, Morrisett JD (2011) Automatic quantification of muscle volumes in magnetic resonance imaging scans of the lower extremities. Magn Reson Imaging. https://doi.org/10.1016/j.mri.2011.02.033

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33:115–126

    Article  PubMed  Google Scholar 

  33. Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24:205–219

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le Troter A, Fouré A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magn Reson Mater Phy 29:245–257

    Article  CAS  Google Scholar 

  35. Scheys L, Loeckx D, Spaepen A, Suetens P, Jonkers I (2009) Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech 42:565–572

    Article  PubMed  Google Scholar 

  36. Ghosh S, Ray N, Boulanger P (2017) A structured deep-learning based approach for the automated segmentation of human leg muscle from 3D MRI. In: 2017 14th Conf. Comput. Robot Vis. IEEE, pp 117–123

  37. Ogier A, Sdika M, Foure A, Le Troter A, Bendahan D (2017) Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society. EMBS. IEEE, pp 317–320

  38. Ranzini MBM, Ebner M, Cardoso MJ, Fotiadou A, Vercauteren T, Henckel J, Hart A, Ourselin S, Modat M (2018) Joint multimodal segmentation of clinical CT and MR from hip arthroplasty patients. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Springer, Cham, pp 72–84

  39. Klemt C, Modat M, Pichat J, Cardoso MJ, Henckel J, Hart A, Ourselin S (2015) Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty. Proc. SPIE 9413, Medical Imaging 2015: Image Processing, 94131M

  40. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721

    Article  CAS  PubMed  Google Scholar 

  42. Marstal K, Berendsen F, Staring M, Klein S (2016) SimpleElastix: a user-friendly, multi-lingual library for medical image registration. In: 2016 IEEE conference on computer vision and pattern recognition work. IEEE, pp 574–582

  43. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2009.2035616

    Article  PubMed  Google Scholar 

  44. Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC (2010) The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49:2457–2466

    Article  PubMed  Google Scholar 

  45. Klein S, Pluim JPW, Staring M, Viergever MA (2009) Adaptive stochastic gradient descent optimisation for image registration. Int J Comput Vis 81:227–239

    Article  Google Scholar 

  46. Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738

    Article  CAS  PubMed  Google Scholar 

  47. Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22:418–435

    Article  Google Scholar 

  48. Kolk S, Klawer EME, Schepers J, Weerdesteyn V, Visser EP, Verdonschot N (2015) Muscle activity during walking measured using 3D MRI segmentations and [18F]-fluorodeoxyglucose in combination with positron emission tomography. Med Sci Sports Exerc 47:1896–1905

    Article  PubMed  Google Scholar 

  49. Addison O, Marcus RL, Lastayo PC, Ryan AS (2014) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. https://doi.org/10.1155/2014/309570

    Article  PubMed  PubMed Central  Google Scholar 

  50. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jorge Cardoso M, Leung K, Modat M, Keihaninejad S, Cash D, Barnes J, Fox NC, Ourselin S (2013) STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal 17:671–684

    Article  CAS  PubMed  Google Scholar 

  52. Bojorquez JZ, Bricq S, Walker PM, Lalande A (2015) Automatic classification of tissues using T1 and T2 relaxation times from prostate MRI: a step towards generation of PET/MR attenuation map. In: 2015 IEEE international conference on image processing. IEEE, pp 1185–1189

  53. Yang YX, Chong MS, Tay L, Yew S, Yeo A, Tan CH (2016) Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images. Magn Reson Mater Phy 29:723–731

    Article  Google Scholar 

  54. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks.  In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2017. Lecture notes in computer science, vol 10670. Springer, Cham

  55. Perone CS, Calabrese E, Cohen-Adad J (2018) Spinal cord gray matter segmentation using deep dilated convolutions. Sci Rep 8:5966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhou Z, Zhao G, Kijowski R, Liu F (2018) Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med 80:2759–2770

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R (2018) Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 79:2379–2391

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research study was funded by The Maurice Hatter Foundation, the RNOH Charity, the Rosetrees Trust and the Stoneygate Trust and supported by researchers at the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Funding

This research study was funded by The Maurice Hatter Foundation, the RNOH Charity, the Rosetrees Trust and the Stoneygate Trust and supported by researchers at the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

MAB: Study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, critical revision. JH: Study conception and design, acquisition of data, analysis and interpretation of data, critical revision. AF: Acquisition of data, critical revision. ADL: Study conception and design, Acquisition of data, critical revision. AH: Study conception and design, acquisition of data, analysis and interpretation of data, critical revision.

Corresponding author

Correspondence to Martin A. Belzunce.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this work involving human participants were approved by the local Institutional Review Board. All subjects have given written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belzunce, M.A., Henckel, J., Fotiadou, A. et al. Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images. Magn Reson Mater Phy 33, 677–688 (2020). https://doi.org/10.1007/s10334-020-00839-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00839-3

Keywords

Navigation