Skip to main content
Log in

Toward faster inference of micron-scale axon diameters using Monte Carlo simulations

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Recent advances have allowed oscillating gradient (OG) diffusion MRI to infer the sizes of micron-scale axon diameters. Here the effects on the precision of the inferred diameters are studied when reducing the number of images collected to reduce imaging time for clinical feasibility.

Materials and methods

Monte Carlo simulations of cosine OG sequences (50–1000 Hz) using a two-compartment model on a parallel cylinder (diameters 1–5 μm) geometry were conducted. Temporal diffusion spectroscopy was used to infer axon diameters. Three different gradient sets were simulated with different combinations of gradient strengths.

Results

Five frequencies were adequate for d = 3–5 μm with single-sized cylinders and for effective mean axon diameters greater than 2 μm for cylinders with a distributions of diameters. There was some improvement in precision for d = 1–2 μm with 10 frequencies. It is better to repeat measurements at higher gradient strengths than to use a range of gradient strengths. The improvement tended to be greatest when using fewer frequencies and was especially noticeable at very high gradient strengths.

Conclusion

Images can be collected with fewer gradient strengths and frequencies without sacrificing the precision of the measurements. This could be useful in reducing imaging time so that OG techniques can be used in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schachter M, Does MD, Anderson AW, Gore JC (2000) Measurements of restricted diffusion using an oscillating gradient spin echo sequence. J Magn Reson 147(2):233–237

    Article  CAS  Google Scholar 

  2. Parsons EC, Does MD, Gore JC (2006) Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients. Magn Reson Med 55:75–84

    Article  PubMed  Google Scholar 

  3. Xu J, Li H, Harkins KD, Jiang X, Xie J, Kang H, Does MD, Gore JC (2014) Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy. Neuroimage 103:10–19

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mercredi M, Vincent TJ, Bidinosti CP, Martin M (2017) Assessing the accuracy of using oscillating gradient spin echo sequences with AxCaliber to infer micron-sized axon diameters. Magn Reson Mater Phy 30(1):1–14

    Article  CAS  Google Scholar 

  5. Drobnjak I, Zhang H, Ianuş A, Kaden E, Alexander DC (2016) PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study. Magn Reson Med 75(2):688–700

    Article  PubMed  Google Scholar 

  6. Kakkar LS, Bennett OF, Siow B, Richardson S, Ianuş A, Quick T, Atkinson D, Phillips JB, Drobnjak I (2017) Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: an experimental study in viable nerve tissue. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.07.060

    Article  PubMed  Google Scholar 

  7. Alexander DC (2008) A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn Reson Med 60(2):439–448

    Article  PubMed  Google Scholar 

  8. Drobnjack I, Siow B, Alexander DC (2010) Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR. J Magn Reson 206(1):41–51

    Article  CAS  Google Scholar 

  9. Drobnjak I, Alexander DC (2011) Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR. J Magn Reson 212(2):344–354

    Article  PubMed  CAS  Google Scholar 

  10. Siow B, Drobnjak I, Chatterjee A, Lythgoe MF, Alexander DC (2012) Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence. J Magn Reson 214(1):51–60

    Article  PubMed  CAS  Google Scholar 

  11. Callagan PT (1997) A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms. J Magn Reson 129(1):74–84

    Article  Google Scholar 

  12. Perrault W, Duval T, Cohen-Adad J (2015) Comparison of NOGSE and PGSE sequences for axon diameter estimation. In: Proceedings of the 23th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 2884

  13. Li H, Gore JC, Xu J (2014) Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy. J Magn Reson 242:4–9

    Article  PubMed  CAS  Google Scholar 

  14. Gross B, Kosfeld R (1969) Anwendung der spin-echo-methode der messung der selbstdiffusion. Messtechnik 77:171–177

    Google Scholar 

  15. Stepisnik J (1985) Measuring and imaging of flow by NMR. Prog NMR Spec 17:187–209

    Article  Google Scholar 

  16. Stepisnik J (1993) Time-dependent self-diffusion by NMR spin-echo. Physica B 183:343–350

    Article  CAS  Google Scholar 

  17. Does MD, Parsons EC, Gore JC (2003) Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn Reson Med 49:206–215

    Article  PubMed  Google Scholar 

  18. Xu J, Does MD, Gore JC (2009) Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy. J Magn Reson 200(2):189–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li H, Jiang X, Xie J, McIntyre JO, Gore JC, Xu J (2016) Time-dependent influence of cell membrane permeability on MR diffusion measurements. Magn Reson Med 75(5):1927–1934

    Article  PubMed  CAS  Google Scholar 

  21. Hall MG, Alexander DC (2009) Convergence and parameter choice for monte-carlo simulations of diffusion MRI. IEEE Trans Med Imaging 28:1354–1364

    Article  PubMed  Google Scholar 

  22. Herrera SL, Mercredi ME, Vincent TJ, Buist R, Martin M (2015) Using oscillating gradient spin-echo sequences to infer micron-sized bead and pore radii. In: Proceedings of the 23rd scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 3027

  23. Eis M, Hoehn-Berlage M (1995) Correction of gradient crosstalk and optimization of measurement parameters in diffusion MR imaging. J Magn Reson B 107:222–234

    Article  CAS  Google Scholar 

  24. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJ, Dyrby TB (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52:1374–1389

    Article  PubMed  Google Scholar 

  25. Clayden JD, Nagy Z, Weiskopf N, Alexander DC, Clark CA (2016) Microstructural parameter estimation in vivo using diffusion MRI and structured prior information. Magn Reson Med 75:1787–1796

    Article  PubMed  CAS  Google Scholar 

  26. Lam WW, Jbabdi S, Miller KL (2015) A model for extra-axonal diffusion spectra with frequency-dependent restriction. Magn Reson Med 73:2306–2320

    Article  PubMed  Google Scholar 

  27. Nilsson M, van Westen D, Stahlberg F, Sundgren PC, Latt J (2013) The role of tissue microstructure and water exchange in biophysical modelling of diffusion. Magn Reson Mater Phy 26:345–370

    Article  CAS  Google Scholar 

  28. Zhang H, Hubbard PL, Parker GJM, Alexander DC (2011) Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56(3):1301–1315

    Article  PubMed  Google Scholar 

  29. Avram L, Assaf Y, Cohen Y (2004) The effect of rotational angle and experimental parameters on the diffraction patterns and micro-structural information obtained from q-space diffusion NMR: implication for diffusion in white matter fibers. J Magn Reson 169(1):30–38

    Article  PubMed  CAS  Google Scholar 

  30. Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H (2012) The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed 25(5):795–805

    Article  PubMed  Google Scholar 

  31. Nilsson M, Latt J, Nordh E, Wirestam R, Stahlberg F, Brockstedt S (2009) On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? Magn Reson Imaging 27(2):176–187

    Article  PubMed  Google Scholar 

  32. Nilsson M, Alerstam E, Wirestam R, Stahlberg F, Brockstedt S, Latt J (2010) Evaluating the accuracy and precision of a two-compartment Karger model using Monte Carlo simulations. J Magn Reson 206(1):59–67

    Article  PubMed  CAS  Google Scholar 

  33. Kakkar LS, Atkinson D, Chan RW, Siow B, Ianus A, Drobnjak I (2017) Sensitivity of OGSE ActiveAx to Microstructural Dimensions on a Clinical Scanner. In: Fuster A, Ghosh A, Kaden E, Rathi Y, Reisert M (eds) Computational diffusion MRI. MICCAI 2016. Mathematics and visualization. Springer, Cham, pp 85–97

    Google Scholar 

  34. Sepehrband F, Alexander DC, Kurniawan ND, Reutens DC, Yang Z (2016) Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI. NMR Biomed 29(3):293–308

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding provided by the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

MM Data collection or management, data analysis. MM Protocol/project development.

Corresponding author

Correspondence to Morgan Mercredi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercredi, M., Martin, M. Toward faster inference of micron-scale axon diameters using Monte Carlo simulations. Magn Reson Mater Phy 31, 511–530 (2018). https://doi.org/10.1007/s10334-018-0680-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0680-1

Keywords

Navigation