Skip to main content
Log in

Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression.

Materials and methods

A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme.

Results

The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from −114 and −148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p < 0.001 for lung-fat CNR and p = 0.03 for lung-muscle CNR).

Conclusion

Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781. doi:10.1148/radiology.179.3.2027991

    Article  CAS  PubMed  Google Scholar 

  2. Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70(5):1241–1250. doi:10.1002/mrm.24570

    Article  PubMed  Google Scholar 

  3. Gai ND, Malayeri A, Agarwal H, Evers R, Bluemke D (2016) Evaluation of optimized breath-hold and free-breathing 3D ultrashort echo time contrast agent-free MRI of the human lung. J Magn Reson Imaging 43(5):1230–1238. doi:10.1002/jmri.25073

    Article  PubMed  Google Scholar 

  4. Jakob PM, Hillenbrand CM, Wang T, Schultz G, Hahn D, Haase A (2001) Rapid quantitative lung (1)H T(1) mapping. J Magn Reson Imaging 14(6):795–799

    Article  CAS  PubMed  Google Scholar 

  5. Stadler A, Jakob PM, Griswold M, Stiebellehner L, Barth M, Bankier AA (2008) T1 mapping of the entire lung parenchyma: influence of respiratory phase and correlation to lung function test results in patients with diffuse lung disease. Magn Reson Med 59(1):96–101. doi:10.1002/mrm.21446

    Article  PubMed  Google Scholar 

  6. Mirsadraee S, Tse M, Kershaw L, Semple S, Schembri N, Chin C, Murchison JT, Hirani N, van Beek EJ (2016) T1 characteristics of interstitial pulmonary fibrosis on 3T MRI-a predictor of early interstitial change? Quant Imaging Med Surg 6(1):42–49. doi:10.3978/j.issn.2223-4292.2016.02.02

    PubMed  PubMed Central  Google Scholar 

  7. Takahashi M, Togao O, Obara M, van Cauteren M, Ohno Y, Doi S, Kuro-o M, Malloy C, Hsia CC, Dimitrov I (2010) Ultra-short echo time (UTE) MR imaging of the lung: comparison between normal and emphysematous lungs in mutant mice. J Magn Reson Imaging 32(2):326–333. doi:10.1002/jmri.22267

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mai VM, Knight-Scott J, Berr SS (1999) Improved visualization of the human lung in 1H MRI using multiple inversion recovery for simultaneous suppression of signal contributions from fat and muscle. Magn Reson Med 41(5):866–870

    Article  CAS  PubMed  Google Scholar 

  9. Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Elfeber M, Hahn D, Haase A (2002) Magnetization transfer short inversion time inversion recovery enhanced 1H MRI of the human lung. MAGMA 15(1–3):10–17

    PubMed  Google Scholar 

  10. Du J, Takahashi AM, Bae WC, Chung CB, Bydder GM (2010) Dual inversion recovery, ultrashort echo time (DIR UTE) imaging: creating high contrast for short-T(2) species. Magn Reson Med 63(2):447–455. doi:10.1002/mrm.22257

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li C, Magland JF, Rad HS, Song HK, Wehrli FW (2012) Comparison of optimized soft-tissue suppression schemes for ultrashort echo time MRI. Magn Reson Med 68(3):680–689. doi:10.1002/mrm.23267

    Article  CAS  PubMed  Google Scholar 

  12. Du J, Ma G, Li S, Carl M, Szeverenyi NM, VandenBerg S, Corey-Bloom J, Bydder GM (2014) Ultrashort echo time (UTE) magnetic resonance imaging of the short T2 components in white matter of the brain using a clinical 3T scanner. Neuroimage 87:32–41. doi:10.1016/j.neuroimage.2013.10.053

    Article  PubMed  Google Scholar 

  13. Larson PE, Conolly SM, Pauly JM, Nishimura DG (2007) Using adiabatic inversion pulses for long-T2 suppression in ultrashort echo time (UTE) imaging. Magn Reson Med 58(5):952–961. doi:10.1002/mrm.21341

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peters DC, Botnar RM, Kissinger KV, Yeon SB, Appelbaum EA, Manning WJ (2006) Inversion recovery radial MRI with interleaved projection sets. Magn Reson Med 55(5):1150–1156. doi:10.1002/mrm.20865

    Article  PubMed  Google Scholar 

  15. Rasche V, Holz D, Schepper W (1994) Radial turbo spin echo imaging. Magn Reson Med 32(5):629–638

    Article  CAS  PubMed  Google Scholar 

  16. Altbach MI, Outwater EK, Trouard TP, Krupinski EA, Theilmann RJ, Stopeck AT, Kono M, Gmitro AF (2002) Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver. J Magn Reson Imaging 16(2):179–189. doi:10.1002/jmri.10142

    Article  PubMed  Google Scholar 

  17. Theilmann RJ, Gmitro AF, Altbach MI, Trouard TP (2004) View-ordering in radial fast spin-echo imaging. Magn Reson Med 51(4):768–774. doi:10.1002/mrm.20031

    Article  PubMed  Google Scholar 

  18. Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK, Mistretta CA (2000) Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 43(1):91–101

    Article  CAS  PubMed  Google Scholar 

  19. Gai ND, Malayeri AA, Bluemke DA (2016) Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE). J Magn Reson Imaging. doi:10.1002/jmri.25487

    Google Scholar 

  20. Rahmer J, Bornert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 55(5):1075–1082. doi:10.1002/mrm.20868

    Article  PubMed  Google Scholar 

  21. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183(2):343–351. doi:10.2214/ajr.183.2.1830343

    Article  PubMed  Google Scholar 

  22. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512. doi:10.1002/mrm.20605

    Article  PubMed  Google Scholar 

  23. Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 10(3):473–478. doi:10.1109/42.97598

    Article  CAS  PubMed  Google Scholar 

  24. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385. doi:10.1002/jmri.20969

    Article  PubMed  Google Scholar 

  25. NEMA (2001) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication MS 1-2001. National Electrical Manufacturer’s Association, Rosslyn

  26. Benoit-Cattin H, Collewet G, Belaroussi B, Saint-Jalmes H, Odet C (2005) The SIMRI project: a versatile and interactive MRI simulator. J Magn Reson 173(1):97–115. doi:10.1016/j.jmr.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  27. Mulkern R, Haker S, Mamata H, Lee E, Mitsouras D, Oshio K, Balasubramanian M, Hatabu H (2014) Lung parenchymal signal intensity in MRI: a technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences. Concepts Magn Reson Part A Bridg Educ Res 43A(2):29–53. doi:10.1002/cmr.a.21297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garnov N, Linder N, Schaudinn A, Bluher M, Karlas T, Schutz T, Dietrich A, Kahn T, Busse H (2014) Comparison of T1 relaxation times in adipose tissue of severely obese patients and healthy lean subjects measured by 1.5 T MRI. NMR Biomed 27(9):1123–1128. doi:10.1002/nbm.3166

    Article  PubMed  Google Scholar 

  29. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 26(1):68–76. doi:10.1109/TMI.2006.885337

    Article  PubMed  Google Scholar 

  30. Block KT, Frahm J (2008) Radial single-shot STEAM MRI. Magn Reson Med 59(4):686–691. doi:10.1002/mrm.21401

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the NIH Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville D. Gai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author contributions

NDG: Sequence design; protocol development; data collection; data analysis. AAM: Protocol development; data analysis. DAB: Protocol development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, N.D., Malayeri, A.A. & Bluemke, D.A. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI. Magn Reson Mater Phy 30, 387–395 (2017). https://doi.org/10.1007/s10334-017-0613-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0613-4

Keywords

Navigation