Skip to main content

Advertisement

Log in

Assessment of the myelin water fraction in rodent spinal cord using T2-prepared ultrashort echo time MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Multi-component T2 relaxation allows for assessing the myelin water fraction in nervous tissue, providing a surrogate marker for demyelination. The assessment of the number and distribution of different T2 components for devising exact models of tissue relaxation has been limited by T2 sampling with conventional MR methods.

Materials and methods

A T2-prepared UTE sequence was used to assess multicomponent T2 relaxation at 9.4 T of fixed mouse and rat spinal cord samples and of mouse spinal cord in vivo. For in vivo scans, a cryogenically cooled probe allowed for 78-µm resolution in 1-mm slices. Voxel-wise non-negative least square analysis was used to assess the number of myelin water-associated T2 components.

Results

More than one myelin water-associated T2 component was detected in only 12 % of analyzed voxels in rat spinal cords and 6 % in mouse spinal cords, both in vivo and in vitro. However, myelin water-associated T2 values of individual voxels varied between 0.1 and 20 ms. While in fixed samples almost no components below 1 ms were identified, in vivo, these contributed 14 % of the T2 spectrum. No significant differences in MWF were observed in mouse spinal cord in vivo versus ex vivo measurements.

Conclusion

Voxel-wise analysis methods using relaxation models with one myelin water-associated T2 component are appropriate for assessing myelin content of nervous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CPMG:

Carr-Purcell-Meiboom-Gill

CSF:

Cerebrospinal fluid

FWF:

Free water fraction

GM:

Gray matter

IE:

Intra-/extracellular

MET2:

Multi-exponential T2

MRI:

Magnetic resonance imaging

MWF:

Myelin water fraction

NNLS:

Non-negative least square

OWF:

Other water fraction

PBS:

Phosphate-buffered saline

ROI:

Region of interest

SNR:

Signal-to-noise ratio

TE:

Echo time

TR:

Repetition time

UTE:

Ultrashort echo time

WM:

White matter

References

  1. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    Article  CAS  PubMed  Google Scholar 

  2. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367

    Article  CAS  PubMed  Google Scholar 

  3. Ingrisch M, Sourbron S, Morhard D, Ertl-Wagner B, Kumpfel T, Hohlfeld R, Reiser M, Glaser C (2012) Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T. Invest Radiol 47(4):252–258

    Article  PubMed  Google Scholar 

  4. Cramer SP, Larsson HB (2014) Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: a simulation and in vivo study on healthy subjects and multiple sclerosis patients. J Cereb Blood Flow Metab 34(10):1655–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Madler B (2006) Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 24(4):515–525

    Article  PubMed  Google Scholar 

  6. Laule C, Vavasour IM, Kolind SH, Li DK, Traboulsee TL, Moore GR, MacKay AL (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4(3):460–484

    Article  CAS  PubMed  Google Scholar 

  7. Alonso-Ortiz E, Levesque IR, Pike GB (2015) MRI-based myelin water imaging: a technical review. Magn Reson Med 73(1):70–81

    Article  CAS  PubMed  Google Scholar 

  8. Laule C, Vavasour IM, Moore GR, Oger J, Li DK, Paty DW, MacKay AL (2004) Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 251(3):284–293

    Article  CAS  PubMed  Google Scholar 

  9. Oh J, Han ET, Lee MC, Nelson SJ, Pelletier D (2007) Multislice brain myelin water fractions at 3T in multiple sclerosis. J Neuroimaging 17(2):156–163

    Article  PubMed  Google Scholar 

  10. Stewart WA, MacKay AL, Whittall KP, Moore GR, Paty DW (1993) Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn Reson Med 29(6):767–775

    Article  CAS  PubMed  Google Scholar 

  11. Gareau PJ, Rutt BK, Bowen CV, Karlik SJ, Mitchell JR (1999) In vivo measurements of multi-component T2 relaxation behaviour in guinea pig brain. Magn Reson Imaging 17(9):1319–1325

    Article  CAS  PubMed  Google Scholar 

  12. Webb S, Munro CA, Midha R, Stanisz GJ (2003) Is multicomponent T2 a good measure of myelin content in peripheral nerve? Magn Reson Med 49(4):638–645

    Article  CAS  PubMed  Google Scholar 

  13. Bjarnason TA, Vavasour IM, Chia CL, MacKay AL (2005) Characterization of the NMR behavior of white matter in bovine brain. Magn Reson Med 54(5):1072–1081

    Article  CAS  PubMed  Google Scholar 

  14. Kozlowski P, Liu J, Yung AC, Tetzlaff W (2008) High-resolution myelin water measurements in rat spinal cord. Magn Reson Med 59(4):796–802

    Article  PubMed  Google Scholar 

  15. McCreary CR, Bjarnason TA, Skihar V, Mitchell JR, Yong VW, Dunn JF (2009) Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. Neuroimage 45(4):1173–1182

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kozlowski P, Rosicka P, Liu J, Yung AC, Tetzlaff W (2014) In vivo longitudinal myelin water imaging in rat spinal cord following dorsal column transection injury. Magn Reson Imaging 32(3):250–258

    Article  PubMed  Google Scholar 

  17. Vasilescu V, Katona E, Simplaceanu V, Demco D (1978) Water compartments in the myelinated nerve. III. Pulsed NMR results. Experientia 34(11):1443–1444

    Article  CAS  PubMed  Google Scholar 

  18. Dula AN, Gochberg DF, Valentine HL, Valentine WM, Does MD (2010) Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord. Magn Reson Med 63(4):902–909

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harkins KD, Valentine WM, Gochberg DF, Does MD (2013) In-vivo multi-exponential T2, magnetization transfer and quantitative histology in a rat model of intramyelinic edema. Neuroimage Clin 2:810–817

    Article  PubMed  PubMed Central  Google Scholar 

  20. Horch RA, Gore JC, Does MD (2011) Origins of the ultrashort-T2 1H NMR signals in myelinated nerve: a direct measure of myelin content? Magn Reson Med 66(1):24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31(6):673–677

    Article  CAS  PubMed  Google Scholar 

  22. Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37(1):34–43

    Article  CAS  PubMed  Google Scholar 

  23. Menon RS, Rusinko MS, Allen PS (1992) Proton relaxation studies of water compartmentalization in a model neurological system. Magn Reson Med 28(2):264–274

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen TD, Wisnieff C, Cooper MA, Kumar D, Raj A, Spincemaille P, Wang Y, Vartanian T, Gauthier SA (2012) T2 prep three-dimensional spiral imaging with efficient whole brain coverage for myelin water quantification at 1.5 tesla. Magn Reson Med 67(3):614–621

    Article  PubMed  Google Scholar 

  25. Wilhelm MJ, Ong HH, Wehrli SL, Li C, Tsai PH, Hackney DB, Wehrli FW (2012) Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proc Natl Acad Sci USA 109(24):9605–9610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prasloski T, Rauscher A, MacKay AL, Hodgson M, Vavasour IM, Laule C, Madler B (2012) Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. Neuroimage 63(1):533–539

    Article  PubMed  Google Scholar 

  27. Deoni SC, Rutt BK, Arun T, Pierpaoli C, Jones DK (2008) Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 60(6):1372–1387

    Article  PubMed  Google Scholar 

  28. Lankford CL, Does MD (2013) On the inherent precision of mcDESPOT. Magn Reson Med 69(1):127–136

    Article  PubMed  Google Scholar 

  29. Zhang J, Kolind SH, Laule C, MacKay AL (2015) How does magnetization transfer influence mcDESPOT results? Magn Reson Med 74(5):1327–1335

    Article  PubMed  Google Scholar 

  30. Bouhrara M, Spencer RG (2016) Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT. Neuroimage 127:456–471

    Article  PubMed  Google Scholar 

  31. Bouhrara M, Spencer RG (2015) Incorporation of nonzero echo times in the SPGR and bSSFP signal models used in mcDESPOT. Magn Reson Med 74(5):1227–1235

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deoni SC, Matthews L, Kolind SH (2013) One component? Two components? Three? The effect of including a nonexchanging “free” water component in multicomponent driven equilibrium single pulse observation of T1 and T2. Magn Reson Med 70(1):147–154

    Article  PubMed  Google Scholar 

  33. Kirsch S, Schad LR (2011) Single-slice mapping of ultrashort T(2). J Magn Reson 210(1):133–136

    Article  CAS  PubMed  Google Scholar 

  34. Whittall KP, Mackay AL (1989) Quantitative interpretation of nmr relaxation data. J Magn Reson 84(1):134–152

    CAS  Google Scholar 

  35. Does MD, Gore JC (2002) Compartmental study of T(1) and T(2) in rat brain and trigeminal nerve in vivo. Magn Reson Med 47(2):274–283

    Article  PubMed  Google Scholar 

  36. Oh S-H, Bilello M, Schindler M, Markowitz CE, Detre JA, Lee J (2013) Direct visualization of short transverse relaxation time component (ViSTa). Neuroimage 83:485–492

    Article  PubMed  Google Scholar 

  37. Du J, Sheth V, He Q, Carl M, Chen J, Corey-Bloom J, Bydder GM (2014) Measurement of T1 of the ultrashort T2* components in white matter of the brain at 3T. PLoS One 9(8):e103296

    Article  PubMed  PubMed Central  Google Scholar 

  38. Du J, Ma G, Li S, Carl M, Szeverenyi NM, VandenBerg S, Corey-Bloom J, Bydder GM (2014) Ultrashort echo time (UTE) magnetic resonance imaging of the short T2 components in white matter of the brain using a clinical 3T scanner. Neuroimage 87:32–41

    Article  PubMed  Google Scholar 

  39. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA (2013) Magnetic resonance fingerprinting. Nature 495(7440):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62(1):26–34

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation SFB 1009 Project Z02 and the IZKF Münster, PIX. We thank Nathalie Just and Lydia Wachsmuth for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Faber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving animals were in accordance with national legislation and in accordance with the ethical standards in North Rhine Westphalia. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klasen, T., Faber, C. Assessment of the myelin water fraction in rodent spinal cord using T2-prepared ultrashort echo time MRI. Magn Reson Mater Phy 29, 875–884 (2016). https://doi.org/10.1007/s10334-016-0579-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0579-7

Keywords

Navigation