Skip to main content
Log in

Active decoupling of RF coils using a transmit array system

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Implementation of a decoupling method for isolation of transmit and receive radio frequency (RF) coils for concurrent excitation and acquisition (CEA) MRI in samples with ultra-short T2*.

Materials and methods

The new phase and amplitude (PA) decoupling method is implemented in a clinical 3T-MRI system equipped with a parallel transmit array system. For RF excitation, two transmit coils are used in combination with a single receive coil. The transmit coil is geometrically decoupled from the receive coil, and the remaining B 1-induced voltages in the receive coil during CEA are minimized by the second transmit coil using a careful adjustment of the phase and amplitude settings in this coil. Isolation of the decoupling scheme and transmit noise behavior are analyzed for different loading conditions, and a CEA MRI experiment is performed in a rubber phantom with sub-millisecond T2* and in an ex vivo animal.

Results

Geometrical (20 dB) and PA decoupling (50 dB) provided a total isolation of 70 dB between the transmit and receive coils. Integration of a low-noise RF amplifier was necessary to minimize RF transmit noise. CEA MR images could be reconstructed from a rubber phantom and an ex vivo animal.

Conclusion

CEA MRI can be implemented in clinical MRI systems using active decoupling with parallel transmit array capabilities with minor hardware modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gatehouse P, Bydder G (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58(1):1–19

    Article  CAS  PubMed  Google Scholar 

  2. Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM (2007) Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations. J Magn Reson Imaging 25(2):279–289

    Article  PubMed  Google Scholar 

  3. Weiger M, Brunner DO, Dietrich BE, Muller CF, Pruessmann KP (2013) ZTE imaging in humans. Magn Reson Med 70(2):328–332

    Article  PubMed  Google Scholar 

  4. McDonald PJ (1997) Stray field magnetic resonance imaging. Prog Nucl Magn Reson Spectrosc 30:69–99

    Article  CAS  Google Scholar 

  5. Emid S, Creyghton JHN (1985) High resolution imaging in solids. Phys B 128:81–83

    Article  CAS  Google Scholar 

  6. Balcom BJ, Macgregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW (1996) Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Reson A 123(1):131–134

    Article  CAS  PubMed  Google Scholar 

  7. Dadok J, Sprecher RF (1974) Correlation NNW spectroscopy. J Magn Reson 13(2):243–248

    CAS  Google Scholar 

  8. Gupta RK, Ferretti JA, Becker ED (1974) Rapid scan Fourier transform NMR spectroscopy. J Magn Reson 13(3):275–290

    CAS  Google Scholar 

  9. Lurie DJ, McCallum SJ, Hutchison JMS, Alecci M (1996) Continuous-wave NMR imaging of solids. MAGMA 4:77–81

    Article  CAS  PubMed  Google Scholar 

  10. Davies GR, Lurie DJ, Hutchison JMS, McCallum SJ, Nicholson I (2001) Continuous-wave magnetic resonance imaging of short T-2 materials. J Magn Reson 148:289–297

    Article  CAS  PubMed  Google Scholar 

  11. Fagan AJ, Davies GR, Hutchison JM, Lurie DJ (2003) Continuous wave MRI of heterogeneous materials. J Magn Reson 163(2):318–324

    Article  CAS  PubMed  Google Scholar 

  12. Fagan AJ, Davies GR, Hutchison JM, Glasser FP, Lurie DJ (2005) Development of a 3-D, multi-nuclear continuous wave NMR imaging system. J Magn Reson 176(2):140–150

    Article  CAS  PubMed  Google Scholar 

  13. Idiyatullin D, Corum C, Park JY, Garwood M (2006) Fast and quiet MRI using a swept radiofrequency. J Magn Reson 181(2):342–349

    Article  CAS  PubMed  Google Scholar 

  14. Robson MD, Bydder GM (2006) Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 19(7):765–780

    Article  PubMed  Google Scholar 

  15. Rahmer J, Bornert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 55(5):1075–1082

    Article  PubMed  Google Scholar 

  16. Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med 66(2):379–389

    Article  PubMed  Google Scholar 

  17. Garwood M (2013) MRI of fast-relaxing spins. J Magn Reson 229:49–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bloch F, Hansen WW, Packard M (1946) The nuclear induction experiment. Phys Rev 70(7–8):474–485

    Article  CAS  Google Scholar 

  19. Brunner DO, Dietrich BE, Pavan M, Pruessmann K (2012) MRI with sideband excitation: Application to continuous SWIFT. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 150

  20. Idiyatullin D, Suddarth S, Corum C, Adriany G, Garwood M (2011) Continuous SWIFT. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Montreal, Quebec, Canada. p 382

  21. Idiyatullin D, Suddarth S, Corum CA, Adriany G, Garwood M (2012) Continuous SWIFT. J Magn Reson 220:26–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ozen AC, Ertan NK, Atalar E (2012) Detection of MR signal during RF excitation using a transmit array system. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 2295

  23. Ozen AC, Atalar E (2013) Decoupling of transmit and receive coils using a transmit array system: Application to UTE and CEA. In: Proceedings of the 21st scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, Utah, USA, p 767

  24. Eryaman Y, Akin B, Atalar E (2011) Reduction of implant RF heating through modification of transmit coil electric field. Magn Reson Med 65(5):1305–1313

    Article  PubMed  Google Scholar 

  25. Lee RF, Giaquinto RO, Hardy CJ (2002) Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med 48(1):203–213

    Article  PubMed  Google Scholar 

  26. Glover G, Hayes C, Pelc N, Edelstein W, Mueller O, Hart H, Hardy C, O’Donnell M, Barber W (1985) Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 64(2):255–270

    CAS  Google Scholar 

  27. Ludwig R (2000) RF circuit design: Theory and applications, 2nd edn. Pearson Education, India

    Google Scholar 

  28. Klose U (1992) Mapping of the radio frequency magnetic field with a MR snapshot FLASH technique. Med Phys 19(4):1099–1104

    Article  CAS  PubMed  Google Scholar 

  29. Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 10(3):473–478

    Article  CAS  PubMed  Google Scholar 

  30. Saff EB, Kuijlaars ABJ (1997) Distributing many points on a sphere. Math Intell 19(1):5–11

    Article  Google Scholar 

  31. De Graaf RA (2008) In vivo NMR spectroscopy: principles and techniques. Wiley-Interscience, New York

    Google Scholar 

  32. Bahl I, Bhartia P (2003) Microwave solid state circuit design. Wiley-Interscience, New Jersey

    Google Scholar 

  33. Hajimiri A, Lee TH (1988) A general theory of phase noise in electrical oscillators. IEEE J Solid-State Circuits 33(2):179–194

    Article  Google Scholar 

  34. Lee TH, Hajimiri A (2000) Oscillator Phase Noise: a Tutorial. IEEE J Solid-State Circuits 35(3):326–336

    Article  Google Scholar 

  35. Kaa B (2004) A simple approach to YIG oscillators. VHF Commun 4:217–224

    Google Scholar 

  36. Mimura T (2002) The early history of the high electron mobility transistor (HEMT). IEEE Trans Microwave Theory Tech 50(3):780–782

    Article  Google Scholar 

  37. Graesslin I, Glaesel D, Börnert P, Stahl H, Koken P, Nehrke K, Dingemans H, Mens G, Götze J, and Harvey P (2008) An alternative concept of non-sequence-interfering patient respiration monitoring. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, Ontario, Canada p 202

  38. Graesslin I, Stahl H, Nehrke K, Harvey P, Smink J, Mens G, Senn A and Börnert P (2009) An alternative concept for non-sequence interfering, contact-free respiration monitoring. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, Ontario, Canada. p 753

  39. Stang PP, Conolly SM, Santos JM, Pauly JM, Scott GC (2012) Medusa: a scalable MR console using USB. IEEE Trans Med Imaging 31(2):370–379

    Article  PubMed Central  PubMed  Google Scholar 

  40. Graesslin I, Krueger S, Vernickel P, Achtzehn J, Nehrke K, Weiss S (2013) Detection of RF unsafe devices using a parallel transmission MR system. Magn Reson Med 70(5):1440–1449

    Article  PubMed  Google Scholar 

  41. Tannus A, Garwood M (1997) Adiabatic pulses. NMR Biomed 10(8):423–434

    Article  CAS  PubMed  Google Scholar 

  42. Hoult DI, Kolansky G, Kripiakevich D, King SB (2004) The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 171(1):64–70

    Article  CAS  PubMed  Google Scholar 

  43. Ham CL, Engels JM, van de Wiel GT, Machielsen A (1997) Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging 7(5):933–937

    Article  CAS  PubMed  Google Scholar 

  44. Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction imaging. Radiology 179:777–781

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ (2003) Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI. Magn Reson Med 50(1):59–68

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Caglar Özen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özen, A.C., Bock, M. & Atalar, E. Active decoupling of RF coils using a transmit array system. Magn Reson Mater Phy 28, 565–576 (2015). https://doi.org/10.1007/s10334-015-0497-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0497-0

Keywords

Navigation