Skip to main content
Log in

Multiple Colletotrichum species cause anthracnose disease on Japanese pickling melon var. Katsura-uri (Cucumis melo var. conomon)

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Katsura-uri is a variety of Japanese pickling melon (Cucumis melo var. conomon) and traditionally cultivated in the Kyoto area in Japan. The thick flesh and crunchy texture of the fruit are excellent for making Japanese pickles. In 2010, dark brown to black anthracnose spots were found on ripening Katsura-uri fruits after harvest. Four fungal strains (T1, K1, K2 and K3) were isolated from lesions on fruits and identified as four Colletotrichum species (C. orbiculare, C. fructicola, C. aenigma and C. chlorophyti) based on phylogenetic analysis. C. orbiculare K3 isolate caused necrotic lesions on Katsura-uri leaves, whereas C. fructicola K1, C. aenigma K2 and C. chlorophyti T1 isolates caused necrotic lesions on Katsura-uri fruits but not on leaves. Inoculation assays to ripe and immature Katsura-uri fruits suggested that C. chlorophyti causes a postharvest disease; necrotic lesions developed only on ripe fruits. This study showed that multiple Colletotrichum species caused anthracnose on Katsura-uri fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alkan N, Fluhr R, Sherman A, Prusky D (2008) Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit. Mol Plant Microbe Interact 21:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Alkan N, Davydov O, Sagi M, Fluhr R, Prusky D (2009) Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits. Mol Plant Microbe Interact 22:1484–1491

    Article  CAS  PubMed  Google Scholar 

  • Bragard C, Baptista P, Chatzivassiliou E, Serio FD, Gonthier P, Miret JAJ, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke HH, Werf WVD, Civera AV, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Czwienczek E, Maiorano A, Streissl Reignault PL (2022) Pest categorisation of Colletotrichum aenigma, C. alienum, C. perseae, C. siamense and C. theobromicola. EFSA J 20:e07529

    PubMed  PubMed Central  Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum—current status and future directions. Stud Mycol 73:181–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Cheng YJ, Wu YJ, Lee FW (2022) Impact of storage condition on chemical composition and antifungal activity of pomelo extract against Colletotrichum gloeosporioides and anthracnose in post-harvest mango. Plants 11:2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofini A, Negrini F, Baroncelli R (2022) Management of post-harvest anthracnose: current approaches and future perspectives. Plants 11:1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • Dinh SQ, Chongwungse J, Pongam P, Sangchote S (2003) Fruit infection by Colletotrichum gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. Australas Plant Pathol 32:533–538

    Article  Google Scholar 

  • Droby S, Prusky D, Jacoby B, Goldman A (1987) Induction of anti-fungal resorcinols in flesh of unripe mango fruits and its relation to latent infection by Alternaria alternata. Physiol Mol Plant Pathol 30:285–292

    Article  CAS  Google Scholar 

  • Freeman S, Minz D, Maymon M, Zveibil A (2001) Genetic diversity within Colletotrichum acutatum sensu Simmonds. Phytopathology 91:586–592

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Aragón D, Juárez-Vázquez SB, Vargas-Hernández S-R (2018) Colletotrichum fructicola, a member of Colletotrichum gloeosporioides sensu lato, is the causal agent of anthracnose and soft rot in avocado fruits cv. “Hass.” Mycobiology 46:92–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan P, Narusaka M, Tsushima A, Narusaka Y, Takano Y, Shirasu K (2017) Draft genome assembly of Colletotrichum chlorophyti, a pathogen of herbaceous plants. Genome Announc 5:e01733-e1816

    Article  PubMed  PubMed Central  Google Scholar 

  • Gow NAR, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5:3

    Article  Google Scholar 

  • Guo Z, Luo CX, Wu HJ, Peng B, Kang BS, Liu LM, Zhang M, Gu QS (2022) Colletotrichum species associated with anthracnose disease of watermelon (Citrullus lanatus) in China. J Fungi 8:790

    Article  CAS  Google Scholar 

  • Jiang D, Nakamura Y, Park E, Sato K, Shirota K, Suetome N, Kubo Y (2012) New anthracnose disease occurring on Kyoto vegetables-Katsura Cucumis melo. Jpn J Phytopathol 78:197

    Google Scholar 

  • Kanno H, Moriwaki J (2000) Anthracnose of netted melon (Cucumis melo var. reticulatus Naud.) caused by Colletotrichum orbiculare (Berkeley & Montagne) Arx. Jpn J Phytopathol 66:85–90 (in Japanese with English summary)

    Article  Google Scholar 

  • Kobiler I, Prusky D, Midland S, Sims JJ, Keen NT (1993) Compartmentation of antifungal compounds in oil cells of avocado fruit mesocarp and its effect on susceptibility to Colletotrichum gloeosporioides. Physiol Mol Plant Pathol 43:319–328

    Article  CAS  Google Scholar 

  • Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo Y, Takano Y (2013) Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J Gen Plant Pathol 79:233–242

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Wang B, Dong Q, Li L, Rollins JA, Zhang R, Sun G (2018) Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses. PLoS One 13:e0196303

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima NB, Marques MW, Michereff SJ (2013) First report of mango anthracnose caused by Colletotrichum karstii in Brazil. Plant Dis 97:1248

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang X, Liu X, Fu C, Han X, Yin Y, Ma Z (2016) The chitin synthase FgChs2 and other FgChss co-regulate vegetative development and virulence in F. graminearum. Sci Rep 6:34975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Nakayama Y, Ando H, Tanaka A, Matsuo T, Okamoto S, Upham BL, Chang CC, Trosko JE, Park EY, Sato K (2008a) 3-Methylthiopropionic acid ethyl ester, isolated from Katsura-uri (Japanese pickling melon, Cucumis melo var. conomon), enhanced differentiation in human colon cancer cells. J Agric Food Chem 56:2977–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Matsuo T, Okamoto S, Nishikawa A, Imai T, Park EY, Sato K (2008b) Antimutagenic and anticarcinogenic properties of Kyo-yasai, heirloom vegetables in Kyoto. Genes Environ 30:41–47

    Article  CAS  Google Scholar 

  • Nakamura Y, Watanabe S, Kageyama M, Shirota K, Shirota K, Amano H, Kashimoto T, Matsuo T, Okamoto S, Park EY, Sato K (2010) Antimutagenic; differentiation-inducing; and antioxidative effects of fragrant ingredients in Katsura-uri (Japanese pickling melon; Cucumis melo var. conomon). Mutat Res 703:163–168

    Article  CAS  PubMed  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    Article  PubMed  Google Scholar 

  • Phoulivong S, Lei C, Chen H, McKenzie EHC, Abdelsalam K, Chukeatirote E, Hyde KD (2010) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers 44:33–43

    Article  Google Scholar 

  • Prusky D (1998) Mechanisms of resistance of fruits and vegetables to postharvest diseases. ACIAR Proc 80:19–33

    Google Scholar 

  • Prusky D, McEvoy JL, Leverentz B, Conway WS (2001) Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol Plant Microbe Interact 14:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Cai G, Luo J, Bhattacharya D, Zhang N (2016) Extensive horizontal gene transfers between plant pathogenic fungi. BMC Biol 14:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampersad SN (2010) First report of anthracnose caused by Colletotrichum gloeosporioides in pumpkin in Trinidad. Plant Dis 94:1062

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Saitoh K, Togashi K, Arie T, Teraoka T (2006) A simple method for a mini-preparation of fungal DNA. J Gen Plant Pathol 72:348–350

    Article  CAS  Google Scholar 

  • Sato T, Moriwaki J, Kaneko S (2015) Anthracnose fungi with curved conidia, Colletotrichum spp. belonging to ribosomal groups 9–13, and their host ranges in Japan. JARQ 49:351–362

    Article  CAS  Google Scholar 

  • Sharma G, Kumar N, Weir BS, Hyde KD, Shenoy BD (2013) The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Divers 61:117

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talhinhas P, Baroncelli R (2021) Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Divers 110:109–198

    Article  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton MD, Rikkerink EH, Solon SL, Crowhurst RN (1992) Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulate. Gene 122:225–230

    Article  CAS  PubMed  Google Scholar 

  • Tsushima A, Shirasu K (2022) Genomic resources of Colletotrichum fungi: development and application. J Gen Plant Pathol 88:349–357

    Article  CAS  Google Scholar 

  • Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner S, Sugui JA, Steinberg G, Deising HB (2007) A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Microbe Interact 20:1555–1567

    Article  CAS  PubMed  Google Scholar 

  • Yakoby N, Kobiler I, Dinoor A, Prusky A (2000) pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl Environ Microbiol 66:1026–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HC, Stewart JM, Hartman GL (2013) First report of Colletotrichum chlorophyti infecting soybean seed in Arkansas. United States Plant Dis 97:1510

    Article  PubMed  Google Scholar 

  • Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M (2012) Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. Appl Microbiol 113:925–939

    Article  CAS  Google Scholar 

  • Zakaria L (2021) Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—a review. Agriculture 11:297

    Article  CAS  Google Scholar 

  • Zhao Q, Chen X, Ren G, Wang J, Liu L, Qian W, Wang J (2021) First report of Colletotrichum chlorophyti causing peanut anthracnose in China. Plant Dis 105:226

    Article  Google Scholar 

Download references

Acknowledgements

We thank Beth E. Hazen for carefully reading the article and giving valuable suggestions.

Funding

The work was supported by JSPS KAKENHI Grant Numbers 24248009 to YK and 24300253 to YN.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DJ, KS, YN and YK; methodology: DJ, KH and YK; resources: KS; formal analysis and investigation: DJ, KH, MO, KS, AS, TN, SO, EYP, YN and YK; writing original draft: DJ, KH and YK; review and editing: HK and YK.

Corresponding author

Correspondence to Yasuyuki Kubo.

Ethics declarations

Conflict of interest

All the authors declare they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, DL., Harata, K., Ogawa, M. et al. Multiple Colletotrichum species cause anthracnose disease on Japanese pickling melon var. Katsura-uri (Cucumis melo var. conomon). J Gen Plant Pathol 89, 249–259 (2023). https://doi.org/10.1007/s10327-023-01138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-023-01138-0

Keywords

Navigation