Skip to main content
Log in

Biochemical, physiological, and molecular characterization of Dickeya dianthicola (formerly named Erwinia chrysanthemi) causing potato blackleg disease in Japan

  • Bacterial and Phytoplasma Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

The taxonomic assignment of Japanese potato blackleg isolates of Dickeya spp. has not been confirmed after the changes in their former name, Erwinia chrysanthemi. Therefore, we investigated and identified 23 representative isolates of Dickeya spp. from symptomatic stems of potatoes in Japan, with biochemical tests and phylogenetic sequence analysis using recA, dnaX, rpoD, gyrB, and 16S rDNA sequences. Results of our biochemical tests showed that all isolates can be assigned to phenon 5 and biovar 1, which are associated with D. dianthicola. Based on the recA, dnaX, rpoD, gyrB, and 16S rDNA sequences, all isolates are in the same clade with D. dianthicola and were clearly distinguished from D. chrysanthemi, D. dadantii, D. dadantii subsp. dieffenbachiae, D. solani, D. zeae, and D. paradisiaca. Therefore, we conclude that Dickeya spp. isolated from potatoes with blackleg symptoms in Japan are D. dianthicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azegami K, Nishiyama K, Watanabe Y, Suzuki T, Yoshida M, Nose K, Toda S (1985) Tropolone as a root growth-inhibitor produced by a plant pathogenic Pseudomonas sp. causing seedling blight of rice. Ann Phytopathol Soc Jpn 51:315–317

    Article  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blinkova A, Burkart MF, Owens TD, Walker JR (1997) Conservation of the Escherichia coli dnaX programmed ribosomal frameshift signal in Salmonella typhimurium. J Bacteriol 179:4438–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P, Coutinho TA, Vos PD Hauben et al (2012) Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967). Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Int J Syst Evol Microbiol 62:1592–1602

    Article  CAS  PubMed  Google Scholar 

  • Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, Scortichini M, Stead DE, Takikawa Y (2010) Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J Plant Pathol 92:551–592

    Google Scholar 

  • Burkholder WH, McFadden LA, Dimock AW (1953) A bacterial blight of chrysanthemums. Phytopathology 43:522–526

    Google Scholar 

  • Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013

    Article  Google Scholar 

  • De Haan EG, Dekker-Nooren TCEM., van den Bovenkamp GW, Spelsnijder AGC, van der Zouwen PS, van der Wolf JM (2008) Pectobacterium carotovorum subsp. carotovorum can cause potato blackleg in temperate climates. Eur J Plant Pathol 122:561–569

    Article  Google Scholar 

  • Degefu Y, Potrykus M, Golanowska M, Virtanen E, Lojkowska E (2013) A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Ann Appl Biol 162:231–241

    Article  CAS  Google Scholar 

  • Dickey RS (1979) Erwinia chrysanthemi: a comparative study of phenotypic properties of strains from several hosts and other Erwinia species. Phytopathology 69:324–329

    Article  Google Scholar 

  • Duarte V, De Boer SH, Ward LJ, de Oliveira AMR (2004) Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J Appl Microbiol 96:535–545

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Yasuoka S, Aono Y, Nakayama T, Ohki T, Sayama M, Maoka T (2017) First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliense in Japan. Plant dis 101:241

    Article  Google Scholar 

  • Gardan L, Gouy C, Christen R, Samson R (2003) Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53:381–391

    Article  CAS  PubMed  Google Scholar 

  • Hauben L, Van Gijsegem F, Swings J (2005) Genus XXIV. Pectobacterium. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. The proteobacteria, part B. The Gammaproteobacteria, vol 2, 2nd. Springer, New York, pp 721–730

    Google Scholar 

  • Hélias V, Hamon P, Huchet E, Wolf JVD, Andrivon D (2012) Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol 61:339–345

    Article  Google Scholar 

  • Lan WW, Nishiwaki Y, Akino S, Kondo N (2013) Soft rot of root chicory in Hokkaido and its causal bacteria. J Gen Plant Pathol 79:182–193

    Article  CAS  Google Scholar 

  • Lelliott RA, Dickey RS (1984) Genus VII. Erwinia. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, MD, pp 469–476

    Google Scholar 

  • Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150–1163

    Article  PubMed  Google Scholar 

  • Macián MC, Garay E, Pujalte MJ (1996) The arginine dihydrolase (ADH) system in the identification of some marine Vibrio species. Syst Appl Microbiol 19:451–456

    Article  Google Scholar 

  • Maeda Y, Shinohara H, Kiba A, Ohnishi K, Furuya N, Kawamura Y, Ezaki T, Vandamme P, Tsushima S, Hikichi Y (2006) Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int J Syst Evol Microbiol 56:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Nabhan S, Wydra K, Linde M, Debener T (2012) The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathol 61:498–508

    Article  Google Scholar 

  • Nassar A, Darrasse A, Lemattre M, Kotoujansky A, Dervin C, Vedel R, Bertheau Y (1996) Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Appl Environ Microbiol 62:2228–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngwira N, Samson R (1990) Erwinia chrysanthemi: description of two new biovars (bv 8 and bv 9) isolated from kalanchoe and maize host plants. Agronomie 10:341–345

    Article  Google Scholar 

  • Palacio-Bielsa A, Cambra MA, López MM (2006) Characterisation of potato isolates of Dickeya chrysanthemi in Spain by a microtitre system for biovar determination. Ann Appl Biol 148:157–164

    Article  CAS  Google Scholar 

  • Pérombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51:1–12

    Article  Google Scholar 

  • Potrykus M, Golanowska M, Sledz W, Zoledowska S, Motyka A, Kolodziejska A, Butrymowicz J, Lojkowska E (2016) Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis 100:408–417

    Article  CAS  Google Scholar 

  • Samson R, Poutier F, Sailly M, Jouan B (1987) Caractérisation des Erwinia chrysanthemi isolées de Solanum tuberosum et d’autres plantes-hôtes selon les biovars et sérogroupes. EPPO Bull 17:11–16

    Article  Google Scholar 

  • Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L Brenner et al (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953). 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427

    Article  CAS  PubMed  Google Scholar 

  • Sławiak M, van Beckhoven JRCM., Speksnijder AGCL., Czajkowski R, Grabe G, van der Wolf JM (2009) Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol 125:245–261

    Article  Google Scholar 

  • Suharjo R, Sawada H, Takikawa Y (2014) Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR-RFLP. J Gen Plant Pathol 80:237–254

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hélias V, Pirhonen M, Tsror L, Elphinstone JG (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60:385–399

    Article  Google Scholar 

  • Waleron M, Waleron K, Geider K, Lojkowska E (2008) Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. Eur J Plant Pathol 121:161–172

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Bouvet PJM, Harayama S (1999) Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95

    Article  CAS  PubMed  Google Scholar 

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financial supported by the Science and Technology Research Promotion Program for the Agriculture, Forestry, Fisheries, and Food industry (no. 27005C). The authors thank Dr. Yuichi Takikawa (Shizuoka University) for providing P. carotovorum subsp. brasiliense (SUPP30) P. wasabiae (SUPP2667, SUPP2668 and SUPP1422) and Hiroshi Uematsu (Yokohama Plant Protection Station) for providing genomic DNA of D. solani (YPPS1551d, YPPS1552d, YPPS1559d and YPPS1600d). The authors thank Enago (http://ww.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taketo Fujimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, T., Yasuoka, S., Aono, Y. et al. Biochemical, physiological, and molecular characterization of Dickeya dianthicola (formerly named Erwinia chrysanthemi) causing potato blackleg disease in Japan. J Gen Plant Pathol 84, 124–136 (2018). https://doi.org/10.1007/s10327-018-0772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-018-0772-9

Keywords

Navigation