Skip to main content
Log in

Identification of a cell-surface protein involved in glucose assimilation and disruption of the crystalline region of cellulose by Cytophaga hutchinsonii

  • Environmental Microbiology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The crystalline region of cellulose is the main barrier to the utilization of crystalline cellulose. Cytophaga hutchinsonii actively digests the crystalline region of cellulose by an unknown mechanism. Transposon mutagenesis was done to identify a novel gene locus chu_1557, which is required for efficient disruption of the crystalline region of cellulose, and the absence of CHU_1557 resulted in decreased glucose assimilation efficiency. The defect of the mutant in the disruption of the crystalline region of cellulose was partially retained by additional glucose or pre-culturing the mutant in a low glucose concentration medium which could improve its glucose absorption efficiency. These results suggested that extracellular glucose has important roles in the disruption of crystalline cellulose by C. hutchinsonii. Further study showed that the expression of an outer membrane protein CHU_3732 was downregulated by the absence of CHU_1557 in a low glucose concentration medium. CHU_3732 was involved in uptake of glucose and its expression was induced by a low concentration of glucose. CHU_3732 was predicted to be a porin, so we inferred that it may work as a glucose transport channel in the outer membrane. Based on these results, we deduced that CHU_1557 played a role in the process of glucose assimilation and its disruption affected the expression of other proteins related to glucose transportation such as CHU_3732, and then affected the cell growth in a low glucose concentration medium and disruption of the crystalline region of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bai X, Wang X, Wang S, Ji X, Guan Z, Zhang W, Lu X (2017) Functional studies of beta-glucosidases of Cytophaga hutchinsonii and their effects on cellulose degradation. Front Microbiol 8:140. https://doi.org/10.3389/fmicb.2017.00140

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  3. Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789. https://doi.org/10.1104/pp.108.116293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18:297–305. https://doi.org/10.1093/emboj/18.2.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama J, Takahashi H, Kitamoto K (2010) Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 76:2556–2561. https://doi.org/10.1128/AEM.02499-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326. https://doi.org/10.1038/35030000

    Article  CAS  PubMed  Google Scholar 

  7. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  CAS  Google Scholar 

  8. Forsberg Z, Mackenzie AK, Sorlie M, Rohr AK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8446–8451. https://doi.org/10.1073/pnas.1402771111

    Article  CAS  PubMed  Google Scholar 

  9. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. https://doi.org/10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  10. Ji X, Wang Y, Zhang C, Bai X, Zhang W, Lu X (2014) Novel outer membrane protein involved in cellulose and cellooligosaccharide degradation by Cytophaga hutchinsonii. Appl Environ Microbiol 80:4511–4518. https://doi.org/10.1128/AEM.00687-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji X, Xu Y, Zhang C, Chen N, Lu X (2012) A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96:161–170. https://doi.org/10.1007/s00253-012-4051-y

    Article  CAS  PubMed  Google Scholar 

  12. Jing H, Takagi J, Liu JH, Lindgren S, Zhang RG, Joachimiak A, Wang JH, Springer TA (2002) Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins. Structure 10:1453–1464

    Article  CAS  Google Scholar 

  13. Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172. https://doi.org/10.1128/AEM.02960-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577 (table of contents)

    Article  CAS  Google Scholar 

  15. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  16. Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Stanier RY (1942) The cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6:143–196

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Zhao D, Bai X, Zhang W, Lu X (2017) Identification and characterization of a large protein essential for degradation of the crystalline region of cellulose by Cytophaga hutchinsonii. Appl Environ Microbiol. https://doi.org/10.1128/aem.02270-16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Wang Z, Cao J, Guan Z, Lu X (2014) FLP-FRT-based method to obtain unmarked deletions of CHU_3237 (porU) and large genomic fragments of Cytophaga hutchinsonii. Appl Environ Microbiol 80:6037–6045. https://doi.org/10.1128/AEM.01785-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Wang J, Li J, Yang G, Zhou Y (2011) Quantitative investigation of cellular growth in directional solidification by phase-field simulation. Phys Rev E Stat Nonlinear Soft Matter Phys 84:041604. https://doi.org/10.1103/PhysRevE.84.041604

    Article  CAS  Google Scholar 

  21. Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297. https://doi.org/10.1196/annals.1419.026

    Article  CAS  PubMed  Google Scholar 

  22. Wilson DB (2009) Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16:723–727. https://doi.org/10.1007/s10570-009-9326-9

    Article  CAS  Google Scholar 

  23. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546. https://doi.org/10.1128/AEM.00225-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou H, Wang X, Yang T, Zhang W, Chen G, Liu W (2016) An outer membrane protein involved in the uptake of glucose is essential for Cytophaga hutchinsonii cellulose utilization. Appl Environ Microbiol 82:1933–1944. https://doi.org/10.1128/AEM.03939-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu Y, Han L, Hefferon KL, Silvaggi NR, Wilson DB, McBride MJ (2016) Periplasmic Cytophaga hutchinsonii endoglucanases are required for use of crystalline cellulose as the sole source of carbon and energy. Appl Environ Microbiol 82:4835–4845. https://doi.org/10.1128/AEM.01298-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu Y, McBride MJ (2014) Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98:763–775. https://doi.org/10.1007/s00253-013-5355-2

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Y, McBride MJ (2017) The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 101:7113–7127. https://doi.org/10.1007/s00253-017-8467-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers 31770080 and 31371262). We sincerely thank Dr. Mark J. McBride (University of Wisconsin-Milwaukee, Milwaukee, USA) for providing C. hutchinsonii ATCC 33406. Thanks to Dr. Edward C. Mignot, Shandong University, for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhao, D., Zhang, W. et al. Identification of a cell-surface protein involved in glucose assimilation and disruption of the crystalline region of cellulose by Cytophaga hutchinsonii. J Ind Microbiol Biotechnol 46, 1479–1490 (2019). https://doi.org/10.1007/s10295-019-02212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02212-3

Keywords

Navigation