Skip to main content
Log in

Multiple-step chromosomal integration of divided segments from a large DNA fragment via CRISPR/Cas9 in Escherichia coli

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Although CRISPR/Cas9-mediated gene editing technology has developed vastly in Escherichia coli, the chromosomal integration of large DNA fragment is still challenging compared with gene deletion and small fragment integration. Moreover, to guarantee sufficient Cas9-induced double-strand breaks, it is usually necessary to design several gRNAs to select the appropriate one. Accordingly, we established a practical daily routine in the laboratory work, involving multiple-step chromosomal integration of the divided segments from a large DNA fragment. First, we introduced and optimized the protospacers from Streptococcus pyogenes in E. coli W3110. Next, the appropriate fragment size for each round of integration was optimized to be within 3–4 kb. Taking advantage of the optimized protospacer/gRNA pairs, a DNA fragment with a total size of 15.4 kb, containing several key genes for uridine biosynthesis, was integrated into W3110 chromosome, which produced 5.6 g/L uridine in shake flask fermentation. Using this strategy, DNA fragments of virtually any length can be integrated into a suitable genomic site, and two gRNAs can be alternatively used, avoiding the tedious construction of gRNA-expressing plasmids. This study thus presents a useful strategy for large DNA fragment integration into the E. coli chromosome, which can be easily adapted for use in other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. https://doi.org/10.1038/nature06450

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham DS, Koepsel RR, Ataai MM, Domach MM (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 8:27. https://doi.org/10.1186/1475-2859-8-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. https://doi.org/10.1038/msb.2012.66

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fan XG, Wu HY, Li GL, Yuan H, Zhang HC, Li YJ, Xie XX, Chen N (2017) Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS One 12:e0176545. https://doi.org/10.1371/journal.pone.0176545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67. https://doi.org/10.1038/nature09523

    Article  CAS  PubMed  Google Scholar 

  7. Jeong J, Cho N, Jung D, Bang D (2013) Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 31:804–810. https://doi.org/10.1016/j.biotechadv.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  8. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. https://doi.org/10.1038/nbt.2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514. https://doi.org/10.1128/AEM.04023-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38:e92. https://doi.org/10.1093/nar/gkp1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lange J, Müller F, Takors R, Blombach B (2018) Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol 11:257–263. https://doi.org/10.1111/1751-7915.12879

    Article  CAS  PubMed  Google Scholar 

  13. Li YF, Lin ZQ, Huang C, Zhang Y, Wang Z, Tang YJ (2015) Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31:13–21. https://doi.org/10.1016/j.ymben.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  14. Nakashima N, Akita H, Hoshino T (2014) Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab Eng 25:204–214. https://doi.org/10.1016/j.ymben.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  15. Park HM, Liu H, Wu J, Chong A, Mackley V, Fellmann C, Rao A, Jiang F, Chu H, Murthy N, Lee K (2018) Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat Commun 9:3313. https://doi.org/10.1038/s41467-018-05641-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pyne ME, Mooyoung M, Chung DA, Chou CP (2015) Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81:5103–5114. https://doi.org/10.1128/AEM.01248-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206. https://doi.org/10.1038/nprot.2008.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song CW, Lee J, Lee SY (2015) Genome engineering and gene expression control for bacterial strain development. Biotechnol J 10:56–68. https://doi.org/10.1002/biot.201400057

    Article  CAS  PubMed  Google Scholar 

  19. St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE (2013) One-step cloning and chromosomal integration of DNA. ACS Synth Biol 2:537–541. https://doi.org/10.1021/sb400021j

    Article  CAS  PubMed  Google Scholar 

  20. Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765. https://doi.org/10.1038/nbt.1555

    Article  CAS  PubMed  Google Scholar 

  21. Ublinskaya AA, Samsonov VV, Mashko SV, Stoynova NV (2012) A PCR-free cloning method for the targeted φ80 Int-mediated integration of any long DNA fragment, bracketed with meganuclease recognition sites, into the Escherichia coli chromosome. J Microbiol Methods 89:167–173. https://doi.org/10.1016/j.mimet.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  22. Wang HH, Church GM (2011) Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Method Enzymol 498:409–426. https://doi.org/10.1016/B978-0-12-385120-8.00018-8

    Article  CAS  Google Scholar 

  23. Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241. https://doi.org/10.1016/j.ymben.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983. https://doi.org/10.1073/pnas.100127597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Tao Chen of Tianjin University for providing plasmids used in the CRISPR/Cas9 system. This work was financially supported by National High Technology Research and Development Program (2015AA021003), National Natural Science Foundation of China (31500026, 31700037), China Postdoctoral Science Foundation funded project (2016M601269, 2017M61170) and Tianjin Key Technology R & D program of Tianjin Municipal Science and Technology Commission (17YFZCSY01050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xixian Xie or Ning Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, F., Wu, H. et al. Multiple-step chromosomal integration of divided segments from a large DNA fragment via CRISPR/Cas9 in Escherichia coli. J Ind Microbiol Biotechnol 46, 81–90 (2019). https://doi.org/10.1007/s10295-018-2114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2114-5

Keywords

Navigation