Skip to main content
Log in

Purification and characterization of indochrome type blue pigment produced by Pseudarthrobacter sp. 34LCH1 isolated from Atacama desert

  • Natural Products - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The interest in and demand for natural dyes has increased significantly in recent years; however, very few natural blue dyes are commercially available, because blue colored compounds in nature are relatively rare. In this study, a blue pigment-producing bacteria from Lake Chungará (Atacama Desert, Chile) was isolated, and its blue pigment was purified and chemically characterized. The pigment-producing strain was identified as Pseudarthrobacter sp. by 16S rRNA gene sequencing. The pigment was separated from the filtered culture medium by column chromatography/solid-phase extraction using different resins (ionic exchange, C-18, size exclusion). The strain produced up to 2.5 g L−1 of blue pigment, which was very soluble in water, partially soluble in methanol and insoluble in other organic solvents. The pigment was analyzed and characterized by analytical HPLC, UV–Vis, FT-IR, and H-NMR, and purified by semi-preparative HPLC. The pigment was non-toxic to brine shrimp (LD50 > 2.3 g L−1) and was stable at pH 6–10 at temperatures below 60 °C. HPLC analysis shows that the pigment is composed of four major blue fractions. The physicochemical properties and structural analysis demonstrate that this pigment belongs to the indochrome isomers, whose properties have yet to have been characterized. The high solubility in water, good stability in neutral and basic pH, and negligible toxicity of the blue pigment make it a good candidate suitable for several industrial and possibly some food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adeel S, Rafi S, Salman M, Abrar S (2017) Potential resurgence of natural dyes in applied fields. In: Ulislam S (ed) plant-based natural products: derivatives and applications. Wiley, Beverly, pp 1–25

    Google Scholar 

  2. Akilandeswari P, Pradeep BV (2017) Microbial pigments: potential functions and prospects. In: Singh OV (ed) Biopigmentation and biotechnological implementations. Wiley, New Jersey, pp 241–261

    Chapter  Google Scholar 

  3. Buchweitz M (2016) natural solutions for blue colors in food. In: Carle R, Schweiggert RM (eds) Handbook on natural pigments in food and beverages. Woodhead Publishing, Amsterdam, pp 355–384

    Chapter  Google Scholar 

  4. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  CAS  PubMed  Google Scholar 

  5. Bycrof BW, Payne DJ (2013) Dictionary of antibiotics and related substances with CD-ROM, 2nd edn. CRC Press, London

    Book  Google Scholar 

  6. Cang S, Sanada M, Johdo O, Ohta S, Nagamatsu Y et al (2000) High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett 22:1761–1765

    Article  CAS  Google Scholar 

  7. Fernández-López JA, Roca MJ, Angosto JM, Obón JM (2018) Betaxanthin-rich extract from cactus pear fruits as yellow water-soluble colorant with potential application in foods. Plant Foods Hum Nutr 73(2):146–153

    Article  CAS  PubMed  Google Scholar 

  8. Habermehl G, Christ BG (1977) Amylocyanin, the blue pigment of Streptomyces coelicolor. Naturwissenschaften 64(2):97–98

    Article  CAS  PubMed  Google Scholar 

  9. Habermehl G, Christ B, Kutzner H (1977) Isolation, Separation and Structure of the Blue Pigment Amylocyanin from Streptomyces coelicolor Müller. Z Naturforsch B 32:1195–1203

    Article  Google Scholar 

  10. Hamidi M, Jovanova B, Panovska T (2014) Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Maced Pharm Bull 60(1):9–18

    Article  Google Scholar 

  11. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knackmuss HJ, Beckmann W (1973) The structure of Nicotine Blue from Arthrobacter oxidans. Arch Mikrobiol 90:167–169

    Article  CAS  PubMed  Google Scholar 

  13. Knackmuss HJ, Briaire J (1970) Struktur und Synthese des Indochroms. Eur J Org Chem 736:68–74

    CAS  Google Scholar 

  14. Knackmuss HJ, Cosens G, Starr MP (1969) The soluble blue pigment, indochrome, of Arthrobacter polychromogenes. Eur J Biochem 10:90–95

    Article  CAS  PubMed  Google Scholar 

  15. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175

    Google Scholar 

  16. Libralato G, Prato E, Migliore L, Cicero AM, Manfrade L (2016) A review of toxicity testing protocols and endpoints with Artemia spp. Ecol Indic 69:35–49

    Article  CAS  Google Scholar 

  17. Lu Y, Wang L, Xue Y, Zhang C, Xing XH et al (2009) Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem Eng J 43:135–141

    Article  CAS  Google Scholar 

  18. Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microbial Res Technol 1:361–365

    Google Scholar 

  19. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE et al (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45(5):31–34

    Article  CAS  PubMed  Google Scholar 

  20. Newsome AG, Culver CA, van Breemen RB (2014) Nature’s Palette: the Search for Natural Blue Colorants. J Agric Food Chem 62:6498–6511

    Article  CAS  PubMed  Google Scholar 

  21. Newsome AG, Murphy BT, van Breemen RB (2013) Isolation and characterization of natural blue pigments from underexplored sources. In: Tunick MH, Onwulata CI (eds) ACS Symposium Series 1138. American Chemical Society, Washington DC, pp 105–125

    Google Scholar 

  22. Nigam PS, Luke JL (2016) Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci 7:93–100

    Article  Google Scholar 

  23. Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76

    Article  Google Scholar 

  24. Pankaj VP, Kumar R (2016) Microbial pigment as a potential natural colorant for contributing to mankind. Res Trends Mol Biol, pp 85-98

  25. Parra AL, Yhebra RS, Sardiñas IG, Buela LI (2001) Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 8:395–400

    Article  Google Scholar 

  26. Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26

    Article  Google Scholar 

  27. Schippers-Lammertse AF, Muijsers AO, Klatser-Oedekerk KB (1963) Arthrobacter polychromogenes nov. sp., its pigments, and a bacteriophage of this species. Antonie Van Leeuwenhoek 29:1–15

    Article  CAS  Google Scholar 

  28. Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med 59:250–252

    Article  CAS  PubMed  Google Scholar 

  29. Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L (2014) Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Res Int 65(B):156–162

    Article  CAS  Google Scholar 

  30. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079

    Article  CAS  Google Scholar 

  31. Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3:59–77

    Article  CAS  PubMed  Google Scholar 

  32. Xu F, Gage D, Zhan J (2015) Efficient production of indigoidine in Escherichia coli. J Ind Microbiol Biotechnol 42:1149–1155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Matthew Lee for his support for the review of this manuscript. This work was supported by Innova CORFO-Chile (IDL2-18532) and Internal Research Project on Applied Science of the Universidad de Los Lagos, not existing conflicts of interest with funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix A. Godoy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finger, S., Godoy, F.A., Wittwer, G. et al. Purification and characterization of indochrome type blue pigment produced by Pseudarthrobacter sp. 34LCH1 isolated from Atacama desert. J Ind Microbiol Biotechnol 46, 101–111 (2019). https://doi.org/10.1007/s10295-018-2088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2088-3

Keywords

Navigation