Skip to main content
Log in

Synthetic pathway optimization for improved 1,2,4-butanetriol production

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

1,2,4-Butanetriol (BT) is an important non-natural chemical with a variety of industrial applications. Identifying the bottlenecks for BT biosynthesis is expected to contribute to improving the efficiency of this process. In this work, we first constructed a prototype strain for BT production by assembling a four-step synthetic pathway and disrupting the competing pathways for xylose in Escherichia coli BW25113. Using this prototype strain, we conducted systematic fine-tuning of the pathway enzyme expression level to identify the potential bottlenecks and optimize the BT biosynthesis. Production conditions were also optimized by exploring the effects of temperature, pH and cell density on BT titer. BT production was increased by 4.3-fold from the prototype strain, achieved a final titer of 1.58 g/L with a yield of 7.9 % after 72-h biotransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Ghany SE, Day I, Heuberger AL, Broeckling CD, Reddy ASN (2013) Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. Metab Eng 20:109–120. doi:10.1016/j.ymben.2013.10.003

    Article  PubMed  CAS  Google Scholar 

  2. Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25:167–178. doi:10.1016/0378-1119(83)90222-6

    Article  PubMed  CAS  Google Scholar 

  3. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050

    PubMed  Google Scholar 

  4. Cao Y, Xian M, Zou H, Zhang H (2013) Metabolic engineering of Escherichia coli for the production of xylonate. PLoS One 8:e67305. doi:10.1371/journal.pone.0067305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. doi:10.1073/pnas.120163297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucl Acids Res 39:1131–1141. doi:10.1093/Nar/Gkq810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. de Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci USA 80:21–25

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frost JW, Niu W (2008) Microbial synthesis of d-1,2,4-butanetriol. WO2008091288 A2, Mar 19, 2009

  9. Gouranlou F, Kohsary I (2010) Synthesis and characterization of 1,2,4-butanetrioltrinitrate. Asian J Chem 22:4221–4228

    CAS  Google Scholar 

  10. Jiang Y, Liu W, Cheng T, Cao Y, Zhang R, Xian M (2015) Characterization of d-xylonate dehydratase YjhG from Escherichia coli. Bioengineered 6:227–232. doi:10.1080/21655979.2015.1040208

    Article  PubMed  Google Scholar 

  11. Levin-Karp A, Barenholz U, Bareia T, Dayagi M, Zelcbuch L, Antonovsky N, Noor E, Milo R (2013) Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters. ACS Synth Biol 2:327–336. doi:10.1021/Sb400002n

    Article  PubMed  CAS  Google Scholar 

  12. Li XH, Cai Z, Li Y, Zhang YP (2014) Design and construction of a non-natural malate to 1,2,4-butanetriol pathway creates possibility to produce 1,2,4-butanetriol from glucose. Sci Rep UK. doi:10.1038/Srep05541

    Google Scholar 

  13. Lou CB, Stanton B, Chen YJ, Munsky B, Voigt CA (2012) Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 30:1137-+. doi:10.1038/Nbt.2401

  14. Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998–12999. doi:10.1021/Ja036391

    Article  PubMed  CAS  Google Scholar 

  15. Ren T, Liu DX (1999) Synthesis of cationic lipids from 1,2,4-butanetriol. Tetrahedron Lett 40:209–212. doi:10.1016/S0040-4039(98)02381-8

    Article  CAS  Google Scholar 

  16. Sun L, Yang F, Zhu T, Li X, Sun H, Li Y, Xu Z, Zhang Y (2015) Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli. Chin J Biotech (in press)

  17. Tandon VK, Van Leusen AM, Wynberg H (1983) Synthesis of enantiomerically pure (S)-(+)-3-hydroxytetrahydrofuran, and its (R)-enantiomer, from malic or tartaric acid. J Org Chem 48:2767–2769. doi:10.1021/jo00164a027

    Article  CAS  Google Scholar 

  18. Valdehuesa KNG, Lee WK, Ramos KR, Cabulong RB, Choi J, Liu H, Nisola GM, Chung WJ (2015) Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli. Bioprocess Biosyst Eng. doi:10.1007/s00449-015-1417-4

    PubMed  Google Scholar 

  19. Valdehuesa KNG, Liu H, Ramos KRM, Park SJ, Nisola GM, Lee WK, Chung WJ (2014) Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochem 49:25–32. doi:10.1016/j.procbio.2013.10.002

    Article  CAS  Google Scholar 

  20. Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotech 24:1061–1068. doi:10.1016/j.copbio.2013.03.002

    Article  PubMed  Google Scholar 

  21. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452. doi:10.1038/Nchembio.580

    Article  PubMed  CAS  Google Scholar 

  22. Zhu L, Cai Z, Zhang Y, Li Y (2014) Engineering stress tolerance of Escherichia coli by stress-induced mutagenesis (SIM)-based adaptive evolution. Biotechnol J 9:120–127. doi:10.1002/biot.201300277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-EW-G-5) and Beijing Municipal Natural Science Foundation (31170039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taicheng Zhu, Zhenghong Xu or Yanping Zhang.

Additional information

L. Sun and F. Yang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Yang, F., Sun, H. et al. Synthetic pathway optimization for improved 1,2,4-butanetriol production. J Ind Microbiol Biotechnol 43, 67–78 (2016). https://doi.org/10.1007/s10295-015-1693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1693-7

Keywords

Navigation