Skip to main content
Log in

Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in Osmotolerant yeast, Candida glycerinogenes WL2002-5

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Yeasts are excellent hosts for the production of recombinant proteins. Candida glycerinogenes WL2002-5, an osmotolerant yeast with extremely high glycerol productivity, provides an attractive eukaryotic expression platform. The integrative vectors PURGAP-gfp and PURGPD-gfp harbouring phleomycin-resistance coding sequence and GFP coding sequence with PCgGAP, PCgGPD promoter, respectively, were constructed. The recombinant plasmid PURPpGAP-gfp with the promoter PPpGAP based on the sequence of Pichia pastoris GAPDH gene and the plasmid PURScGAP-gfp with the promoter PScGAP from Saccharomyces cerevisiae were constructed. After transformation, the copy number of gfp gene, which determined using fluorescent quantitative real-time polymerase chain reaction (FQ-RTPCR) in genome of C. glycerinogenes is 1. Expressions of gfp at different levels were conducted using different promoters by osmotic stress containing NaCl or glucose for the recombinant strains. In this study, C. glycerinogenes WL2002-5, expressing xylitol dehydrogenase (XYL2) gene from Pichia stipitis, has the ability to produce glycerol from xylose entered into pentose phosphate pathway. Two recombinant strains of PURGAPX, PURGPDX with XYL2 overexpression were constructed to ferment a mixture of glucose and xylose simultaneously in batch fermentation. Compared to C. glycerinogenes WL2002-5 strain, glycerol production from xylose in strains PURGAPX, PURGPDX were increased by 95.9 and 121.1 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel NA, El-Moghaz (2010) Comparative study of salt tolerance in Saccharomyces cerevisiae and Pichia pastoris yeast strains. Adv Biores 1:169–176

    Google Scholar 

  2. Bisson LF, Neigeborn L, Carlson M, Fraenkel DG (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol 169:1656–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  4. Bouabe H, Fassler R, Heesemann J (2008) Improvement of reporter activity by IRES-mediated polycistronic reporter system. Nucleic Acids Res 36:e28

    Article  PubMed Central  PubMed  Google Scholar 

  5. Busturia A, Lagunas R (1986) Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J Gen Microbiol 132:379–385

    CAS  PubMed  Google Scholar 

  6. Chen XZ, Fang HY, Rao ZM, Shen W, Zhuge B, Wang ZX, Zhuge J (2008) Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res 8:725–734

    Article  CAS  PubMed  Google Scholar 

  7. Cirillo VP (1968) Relationship between sugar structure and competition for the sugar transport system in baker’s yeast. J Bacteriol 95:603–611

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Dhanalakshmi C, Michael DM, James S, James N, Aimen FS, Geoffrey PM, Leslie JF (2006) Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol J 3:14

    Article  Google Scholar 

  9. Eliasson A, Christensson C, Wahlbom CF, Hahn HB (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Garber RC, Turgeon BG, Selker EU, Yoder OC (1988) Organization of ribosomal RNA genes in the fungus Cochliobolus heterostrophus. Curr Genet 14:573–582

    Article  CAS  PubMed  Google Scholar 

  11. Girio FM, Roseiro JC, Sa-Machado P, Duarte-Reis AR, Amaral-Collaqo MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Technol 16:1074–1078

    Article  CAS  Google Scholar 

  12. Grace QC, Jiann-Tsyh L (2010) Use of Quantitative Polymerase Chain Reaction for Determining Copy Numbers of Transgenes in Lesquerella fendleri. Am J Agric Biol Sci 5:415–421

    Article  Google Scholar 

  13. Hernandez M, Esteve T, Prat S, Pla M (2004) Development of realtime PCR systems based on SYBR Green I, Amplifluor and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21. J Cereal Sci 39:99–107

    Article  CAS  Google Scholar 

  14. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    Article  CAS  PubMed  Google Scholar 

  16. Jayaram M, Li YY, Broach JR (1983) The yeast plasmid 2μ encodes components required for its high copy propagation. Cell 34:95–104

    Article  CAS  PubMed  Google Scholar 

  17. Kengo S, Daisuke S, Yuri S, Hiroshi T, Ryosuke Y, Tomohisa H, Chiaki O, Akihiko K (2013) Ethanol fermentation by xylose- assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration. Bioresour Technol 147:84–88

    Article  Google Scholar 

  18. Kleinzeller A, Kotyk A (1967) Transport of monosaccharides in yeast cells and its relationship to cell. In: Mills AK, Krebs H (eds) Aspects of yeast metabolism. F. A. Davis Co., Philadelphia, pp 33–45

    Google Scholar 

  19. Kotyk A (1967) Properties of the sugar carrier in baker’s yeast. II. Specificity of transport. Folia Microbiol 12:121–131

    Article  CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  21. Lopes TS, Hakkaart GJ, Koerts BL, Raué HA, Planta RJ (1991) Mechanism of high-copy-number integration of pMIRY type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene 105:83–90

    Article  CAS  PubMed  Google Scholar 

  22. Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van HH, Raúe HA, Planta RJ (1989) High-copy number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79:199–206

    Article  CAS  PubMed  Google Scholar 

  23. Lopes TS, de Wijs IJ, Steenhauer SI, Verbakel J, Planta RJ (1996) Factors affecting the mitotic stability of high-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae. Yeast 12:467–477

    Article  CAS  PubMed  Google Scholar 

  24. Maleszka R, Clark-Walker GD (1993) Yeasts have a four-fold variation in ribosomal DNA copy number. Yeast 9:53–58

    Article  CAS  PubMed  Google Scholar 

  25. Mazzola JL, Sirover MA (2003) Subcellular localization of human glyceraldehydes -3-phosphate dehydrogenase is independent of its glycolytic function. Biochim Biophys Acta 1622:50–56

    Article  CAS  PubMed  Google Scholar 

  26. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accel-erated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140

    Article  PubMed Central  PubMed  Google Scholar 

  27. Melamed D, Pnueli L, Arava Y (2008) Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 14:1337–1351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nolleau V, Preziosi-Belloy L, Delgenes JP, Navarro JM (1993) Xylitol production from xylose by two yeast strains: sugar tolerance. Curr Microbial 27:191–197

    Article  CAS  Google Scholar 

  29. Petes TD (1979) Yeast ribosomal DNA genes are located on chromosomeXII. Proc Natl Acad Sci USA 76:410–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ponchel F (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ralser M, Walmelink MW, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  32. Serrano R, Delafuente G (1974) Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem 5:161–171

    Article  CAS  PubMed  Google Scholar 

  33. Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehydes- 3-phosphate dehydrogenase in mammalian cells. J Cell Biochem 95:45–52

    Article  CAS  PubMed  Google Scholar 

  34. Suk-Jin H, Soo RK, Heejin K, Jing D, Jamie HDC, Yong-Su J (2013) Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour Technol 149:525–531

    Article  Google Scholar 

  35. Tetsuya G, Kanako N, Masaharu T, Hiroyuki I, Shinichi Y, Tamotsu H, Akinori M (2013) Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 116:551–554

    Article  Google Scholar 

  36. Udem SA, Warner JR (1972) Ribosomal RNA synthesis in Saccharomyces cerevisiae. J Mol Biol 65:227–242

    Article  CAS  PubMed  Google Scholar 

  37. Vall ZC, Prior BA, Brandt EV (1993) Role of d-ribose as a cometabolite in d-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Micorbiol 59:1487–1494

    Google Scholar 

  38. Vandeska E, Kuzmanova S, Jeffries TW (1995) Xylitol formation and key enzyme activities in Cundidu boidinii under different oxygen transfer rates. J Ferment Bioeng 80:513–516

  39. Van HP, van Dijken JP, Pronk JT (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 26:724–736

    Article  Google Scholar 

  40. Walfridsson M, Anderlund M, Bao X, Hahn-Hagerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224

  41. Wang CQ, Shen Y, Hou J, Suo F, Bao XM (2013) An assay for functional xylose transporters in Saccharomyces cerevisiae. Anal Biochem 442:241–248

    Article  CAS  PubMed  Google Scholar 

  42. Wang M, Fu J, Zhang X, Chen T (2012) Metabolic engineering of Bacillus subtilisfor enhanced production of acetoin. Biotechnol Lett 34:1877–1885

    Article  PubMed  Google Scholar 

  43. Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  CAS  PubMed  Google Scholar 

  44. Waschk D, Klabunde J, Suckow M, Hollenberg CP (2002) Characteristics of the Hansenulapolymorpha genome. In: Gellissen G (ed) Hansenulapolymorpha biology and applications. Wiley, Weinheim, pp 95–104

    Google Scholar 

  45. Yuan JS, Burris J, Stewart NR, Mentewab A, Stewart CN (2007) Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics 8: S6

  46. Zhang C, Zhuge B, Zhan XB, Fang HY, Zong H, Zhuge J (2013) Cloning and characterization of a novel NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase gene from Candida glycerinogenes and use of its promoter. Yeast 30:157–163

    Article  PubMed  Google Scholar 

  47. Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL (2001) Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol 55:686–692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by China National ‘‘863’’ High-Tech Program (No.2012AA021201, No.2011AA02A207) and supported by the National Natural Science Foundation of China (No. 31270080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhuge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zong, H., Zhuge, B. et al. Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in Osmotolerant yeast, Candida glycerinogenes WL2002-5. J Ind Microbiol Biotechnol 42, 113–124 (2015). https://doi.org/10.1007/s10295-014-1530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1530-4

Keywords

Navigation