Skip to main content
Log in

Non-targeted metabolomic reveals the effect of salt stress on global metabolite of halotolerant yeast Candida versatilis and principal component analysis

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

As one of the major microbes in the soy sauce fermentation, Candida versatilis enriches the flavor and improves the quality of soy sauce. In this study, a combination of five different GC-MS and LC-MS-based metabolome analytical approaches was used to analyze the intracellular, extracellular and whole metabolites of C. versatilis. Our results found out that a total of 132, 244 and 267 different metabolites were detectable from the intracellular, extracellular and whole part, respectively. When exposed to 0. 9 and 18 % salt, respectively, 114, 123 and 129 different intracellular metabolites, 184, 200 and 178 extracellular metabolites and 177, 188 and 186 whole metabolites were detected, respectively. Our data showed that salt enhances the metabolic capacity of C. versatilis, especially its amino acid and enhances the synthesis and secretion of some metabolites of C. versatilis, especially the aldehydes and phenols, such as vanillin, guaiacol and 5-hydroxymethylfurfural. Our data also showed that special attention has to be paid to the generation of biogenic amines when C. versatilis was treated with salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams TB, Doull J, Goodman JI, Munro IC, Newberne P, Portoghese PS, Smith RL, Wagner BM, Weil CS, Woods LA, Ford RA (1997) The FEMA GRAS assessment of furfural used as a flavour ingredient. Flavor and Extract Manufacturers’ Association. Food Chem Toxicol 35(8):739–751. doi:10.1016/s0278-6915(97)00056-2

    Article  CAS  PubMed  Google Scholar 

  2. Anese M, Suman M (2013) Mitigation strategies of furan and 5-hydroxymethylfurfural in food. Food Res Int 51(1):257–264. doi:10.1016/j.foodres.2012.12.024

    Article  CAS  Google Scholar 

  3. Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, Van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4(3):226–239. doi:10.1007/s11306-008-0116-4

    Article  CAS  Google Scholar 

  4. Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol 44(4):793–810. doi:10.1016/j.lwt.2010.11.002

    Article  CAS  Google Scholar 

  5. Carraro S, Giordano G, Reniero F, Perilongo G, Baraldi E (2009) Metabolomics: a new frontier for research in pediatrics. J Pediatr 154(5):638–644. doi:10.1016/j.jpeds.2009.01.014

    Article  PubMed  Google Scholar 

  6. Feng J, Zhan X-B, Wang D, Zhang L-M, Lin C-C (2012) An unstructured kinetic model to study NaCl effect on volatile ester fermentation by Candida etchellsii for soy sauce production. Biotechnol Bioprocess Eng 17(2):242–249. doi:10.1007/s12257-011-0416-9

    Article  CAS  Google Scholar 

  7. Gao XL, Cui C, Zhao HF, Zhao MM, Yang L, Ren JY (2010) Changes in volatile aroma compounds of traditional Chinese-type soy sauce during moromi fermentation and heat treatment. Food Sci Biotechnol 19(4):889–898. doi:10.1007/s10068-010-0126-7

    Article  CAS  Google Scholar 

  8. Glatt H, Sommer Y (2006) Health risks of 5-hydroxymethylfurfural (HMF) and related compounds. Acryl Other Hazard Compd Heat Treat Foods. doi:10.1533/9781845692018.2.328

    Google Scholar 

  9. Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) 5-hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38(9):801–809. doi:10.1016/s0278-6915(00)00070-3

    Article  CAS  PubMed  Google Scholar 

  10. Kalac P (2009) Recent advances in the research on biological roles of dietary polyamines in man. J Appl Biomed 7(2):65–74

    CAS  Google Scholar 

  11. Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A (2012) Widely targeted metabolic profiling analysis of yeast central metabolites. J Biosci Bioeng 113(5):665–673. doi:10.1016/j.jbiosc.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  12. Kim B, Byun BY, Mah J-H (2012) Biogenic amine formation and bacterial contribution in Natto products. Food Chem 135(3):2005–2011. doi:10.1016/j.foodchem.2012.06.091

    Article  CAS  PubMed  Google Scholar 

  13. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78(4):1272–1281. doi:10.1021/ac051683+

    Article  CAS  PubMed  Google Scholar 

  14. Lerner AB (2009) Metabolism of phenylalanine and tyrosine. Adv Enzymol 14:73–128

    Google Scholar 

  15. Liu SN, Han Y, Zhou ZJ (2011) Lactic acid bacteria in traditional fermented Chinese foods. Food Res Int 44(3):643–651. doi:10.1016/j.foodres.2010.12.034

    Article  CAS  Google Scholar 

  16. Lorenzo JM, Martinez S, Franco I, Carballo J (2007) Biogenic amine content during the manufacture of dry-cured lacon, a Spanish traditional meat product: effect of some additives. Meat Sci 77(2):287–293. doi:10.1016/j.meatsci.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  17. Lu Y, Chen X, Jiang M, Lv X, Rahman N, Dong M, Gujun Y (2009) Biogenic amines in Chinese soy sauce. Food Control 20(6):593–597. doi:10.1016/j.foodcont.2008.08.020

    Article  CAS  Google Scholar 

  18. Medina S, Ferreres F, Garcia-Viguera C, Horcajada MN, Orduna J, Saviron M, Zurek G, Martinez-Sanz JM, Gil JI, Gil-Izquierdo A (2013) Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice. Food Chem 136(2):938–946. doi:10.1016/j.foodchem.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  19. Mohan CO, Ravishankara CN, Gopal TKS, Kumar KA, Lalitha KV (2009) Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with O-2 scavenger during chilled storage. Food Res Int 42(3):411–416. doi:10.1016/j.foodres.2009.01.015

    Article  CAS  Google Scholar 

  20. Oikawa T (2007) Alanine, aspartate, and asparagine metabolism in microorganisms. In: Wendisch V (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering, vol 5., Microbiology monographsSpringer, Berlin, pp 273–288. doi:10.1007/7171_2006_062

    Chapter  Google Scholar 

  21. Okutsu K, Yoshizaki Y, Takamine K, Tamaki H, Ito K, Sameshima Y (2012) Development of a heat-processing method for koji to enhance its antioxidant activity. J Biosci Bioeng 113(3):349–354. doi:10.1016/j.jbiosc.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  22. Parrott S, Jones S, Cooper RA (1987) 2-Phenylethylamine catabolism by Escherichia coli K12. J Gen Microbiol 133(2):347–351

    CAS  PubMed  Google Scholar 

  23. Pereira V, Albuquerque FM, Ferreira AC, Cacho J, Marques JC (2011) Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res Int 44(1):71–76. doi:10.1016/j.foodres.2010.11.011

    Article  CAS  Google Scholar 

  24. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) Current metabolomics: technological advances. J Biosci Bioeng 116(1):9–16. doi:10.1016/j.jbiosc.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Qi W, Fan Z-C, Wang C-L, Hou L-H, Wang X-H, Liu J-F, Cao X-H (2014) Comparative study of physiological adaptation to salt stress in the genome shuffled Candida versatilis and a wild-type salt-tolerant yeast strain. Eur Food Res Technol 238(4):675–682. doi:10.1007/s00217-013-2115-6

    Article  CAS  Google Scholar 

  26. Qi W, Hou LH, Guo HL, Wang CL, Fan ZC, Liu JF, Cao XH (2013) Effect of salt-tolerant yeast of Candida versatilis and Zygosaccharomyces rouxii on the production of biogenic amines during soy sauce fermentation. J Sci Food Agric. doi:10.1002/jsfa.6454

    Google Scholar 

  27. Quoc-Thai N, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E (2012) Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett 586(15):2177–2183. doi:10.1016/j.febslet.2012.02.008

    Article  Google Scholar 

  28. Rauscher-Gabernig E, Grossgut R, Bauer F, Paulsen P (2009) Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control 20(4):423–429. doi:10.1016/j.foodcont.2008.07.011

    Article  CAS  Google Scholar 

  29. Saito N, Ohashi Y, Soga T, Tomita M (2010) Unveiling cellular biochemical reactions via metabolomics-driven approaches. Curr Opin Microbiol 13(3):358–362. doi:10.1016/j.mib.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  30. Sanchez-Machado DI, Lopez-Cervantes J, Martinez-Cruz O (2008) Quantification of organic acids in fermented shrimp waste by HPLC. Food Technol Biotechnol 46(4):456–460

    CAS  Google Scholar 

  31. Silva-Garca M, Lucas C (2003) Physiological studies on long-term adaptation to salt stress in the extremely halotolerant yeast Candida versatilis CBS 4019 (syn. C halophila). FEMS Yeast Res 3(3):247–260. doi:10.1111/j.1567-1364.2003.tb00167.x

    Google Scholar 

  32. Silva-Graca M, Neves L, Lucas U (2003) Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype? FEMS Yeast Res 3(4):347–362. doi:10.1016/s1567-1356(02)00200-3

    Article  CAS  PubMed  Google Scholar 

  33. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernandez M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64:S95–S100. doi:10.1038/ejcn.2010.218

    Article  CAS  PubMed  Google Scholar 

  34. Stute R, Petridis K, Steinhart H, Biernoth G (2002) Biogenic amines in fish and soy sauces. Eur Food Res Technol 215(2):101–107. doi:10.1007/s00217-002-0509-y

    Article  CAS  Google Scholar 

  35. Suezawa Y, Suzuki M (2007) Bioconversion of ferulic acid to 4-vinylguaiacol and 4-ethylguaiacol and of 4-vinylguaiacol to 4-ethylguaiacol by halotolerant yeasts belonging to the genus Candida. Biosci Biotechnol Biochem 71(4):1058–1062. doi:10.1271/bbb.60486

    Article  CAS  PubMed  Google Scholar 

  36. Svendsen C, Husoy T, Glatt H, Paulsen JE, Alexander J (2009) 5-Hydroxymethylfurfural and 5-sulfooxymethylfurfural increase adenoma and flat ACF number in the intestine of min/plus mice. Anticancer Res 29(6):1921–1926

    CAS  PubMed  Google Scholar 

  37. Tai A, Sawano T, Yazama F, Ito H (2011) Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim Biophys Acta 1810(2):170–177. doi:10.1016/j.bbagen.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  38. Tang H-R, Wang Y-L (2006) Metabonomics: a revolution in progress. Prog Biochem Biophys 33(5):401–417

    CAS  Google Scholar 

  39. Til HP, Falke HE, Prinsen MK, Willems MI (1997) Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem Toxicol 35(3–4):337–348. doi:10.1016/s0278-6915(97)00121-x

    Article  CAS  PubMed  Google Scholar 

  40. Van Der Sluis C, Rahardjo YS, Smit BA, Kroon PJ, Hartmans S, Ter Schure EG, Tramper J, Wijffels R (2002) Concomitant extracellular accumulation of alpha-keto acids and higher alcohols by Zygosaccharomyces rouxii. J Biosci Bioeng 93(2):117–124

    Article  Google Scholar 

  41. van der Sluis C, Tramper J, Wijffels RH (2001) Enhancing and accelerating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes. Trends Food Sci Technol 12(9):322–327. doi:10.1016/s0924-2244(01)00094-2

    Article  Google Scholar 

  42. Villas-Boas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22(14):1155–1169. doi:10.1002/yea.1308

    Article  CAS  PubMed  Google Scholar 

  43. Wanakhachornkrai P, Lertsiri S (2003) Comparison of determination method for volatile compounds in Thai soy sauce. Food Chem 83(4):619–629. doi:10.1016/s0308-8146(03)00256-5

    Article  CAS  Google Scholar 

  44. Watanabe Y, Akita H, Higuchi Y, Tsujimatsu R, Kaneta T, Tamai Y (2008) Heterologous expression of Na(+)/H(+) antiporter gene (C nu NHA1) from salt-tolerant yeast Candida versatilis in Saccharomyces cerevisiae Na(+)-transporter deficient mutants. Biosci Biotechnol Biochem 72(4):1005–1014. doi:10.1271/bbb.70752

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe Y, Nagayama K, Tama Y (2008) Expression of glycerol 3-phosphate dehydrogenase gene (CvGPDl) in salt-tolerant yeast Candida versatilis is stimulated by high concentrations of NaCl. Yeast 25(2):107–116. doi:10.1002/yea.1550

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe Y, Yamaguchi M, Sakamoto J, Tamai Y (1993) Characterization of plasma membrane H(+)-ATPase from salt-tolerant yeast Candida versatilis. Yeast (Chichester, England) 9(3):213–220. doi:10.1002/yea.320090302

    Article  CAS  Google Scholar 

  47. Witthuhn RC, van der Merwe E, Venter P, Cameron M (2012) Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris. Int J Food Microbiol 157(1):113–117. doi:10.1016/j.ijfoodmicro.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  48. Yin L, Choon Y, Chai L, Chong C, Deris S, Illias R, Mohamad M (2013) Prediction of vanillin production in yeast using a hybrid of continuous bees algorithm and flux balance analysis (CBAFBA). In: Sidhu AS, Dhillon SK (eds) Advances in biomedical infrastructure 2013, vol 477., Studies in Computational IntelligenceSpringer, Berlin, pp 101–116. doi:10.1007/978-3-642-37137-0_11

    Chapter  Google Scholar 

  49. Zain ME, El-Sheikh HH, Soliman HG, Khalil AM (2011) Effect of certain chemical compounds on secondary metabolites of Penicillium janthinellum and P. duclauxii. J Saudi Chem Soc 15(3):239–246. doi:10.1016/j.jscs.2010.09.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (2012AA022108, 2012GB2A100016, 2012BAD33B04, 2013AA102106, 10ZCZDSY07000, 31000768, 31171731 and IRT1166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Fu Liu or Xiao-Hong Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Fan, ZC., Wang, CL. et al. Non-targeted metabolomic reveals the effect of salt stress on global metabolite of halotolerant yeast Candida versatilis and principal component analysis. J Ind Microbiol Biotechnol 41, 1553–1562 (2014). https://doi.org/10.1007/s10295-014-1475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1475-7

Keywords

Navigation