Skip to main content
Log in

Enhancing the activity of Bacillus circulans xylanase by modulating the flexibility of the hinge region

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Enzymes undergo multiple conformational changes in solution, and these dynamics are considered to play a critical role in enzyme activity. Hinge-bending motions, resulting from reciprocal movements of dynamical quasi-rigid bodies, are thought to be related to turnover rate and are affected by the physical properties of the hinge regions. In this study, hinge identification and flexibility modification of the regions by mutagenesis were conducted to explore the relationship between hinge flexibility and catalytic activity. Bacillus circulans xylanase was selected for the identification and mutation of the hinge regions. As a result, turnover rate (V max) was improved approximately twofold in mutants that have more rigid hinge structure, despite the decrease in K m and V max/K m. This result indicates that the rigidly mutated hinge has positive effects on B. circulans xylanase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  3. Fisher CL, Pei GK (1997) Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23(4):570–574

    CAS  PubMed  Google Scholar 

  4. Frey PA (2001) Strong hydrogen bonding in molecules and enzymatic complexes. Magn Reson Chem 39((Spec. Iss.)):S190–S198

    Article  CAS  Google Scholar 

  5. Hammes GG (2002) Multiple conformational changes in enzyme catalysis. Biochemistry 41(26):8221–8228

    Article  CAS  PubMed  Google Scholar 

  6. Hayward S (1999) Structural principles governing domain motions in proteins. Proteins Struct Funct Genet 36(4):425–435

    Article  CAS  PubMed  Google Scholar 

  7. Hayward S, Berendsen HJC (1998) Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins Struct Funct Genet 30(2):144–154

    Article  CAS  PubMed  Google Scholar 

  8. Joo JC, Pack SP, Kim YH, Yoo YJ (2011) Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 151(1):56–65

    Article  CAS  PubMed  Google Scholar 

  9. Kim T, Joo JC, Yoo YJ (2012) Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. J Biotechnol 161(1):49–59

    Article  CAS  PubMed  Google Scholar 

  10. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct Funct Bioinform 77(4):778–795

    Article  CAS  Google Scholar 

  11. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666

    Article  CAS  Google Scholar 

  12. Ludwiczek ML, Heller M, Kantner T, McIntosh LP (2007) A Secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 373(2):337–354

    Article  CAS  PubMed  Google Scholar 

  13. Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11(2):184–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Muilu J, Törrönen A, Peräkylä M, Rouvinen J (1998) Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: a molecular dynamics study. Proteins Struct Funct Genet 31(4):434–444

    Article  CAS  PubMed  Google Scholar 

  15. Plesniak LA, Wakarchuk WW, McIntosh LP (1996) Secondary structure and NMR assignments of Bacillus circulans xylanase. Protein Sci 5(6):1118–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pollet A, Vandermarliere E, Lammertyn J, Strelkov SV, Delcour JA, Courtin CM (2009) Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins Struct Funct Bioinform 77(2):395–403

    Article  CAS  Google Scholar 

  17. Potestio R, Pontiggia F, Micheletti C (2009) Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J 96(12):4993–5002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. BioTechnology 6(3):291–294

    Article  CAS  Google Scholar 

  20. Schramm AM, Mehra-Chaudhary R, Furdui CM, Beamer LJ (2008) Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa. Biochemistry 47(35):9154–9162

    Article  CAS  PubMed  Google Scholar 

  21. Schulz GE (1991) Domain motions in proteins. Curr Opin Struct Biol 1(6):883–888

    Article  CAS  Google Scholar 

  22. Sime JT (1999) Applications of biocatalysis to industrial processes. J Chem Educ 76(12):1658–1661

    Article  CAS  Google Scholar 

  23. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64

    Article  CAS  PubMed  Google Scholar 

  24. Sung WL, Luk CK, Zahab DM, Wakarchuk W (1993) Overexpression of the Bacillus subtilis and circulans xylanases in Escherichia coli. Protein Expr Purif 4(3):200–206

    Article  CAS  PubMed  Google Scholar 

  25. Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35(Suppl.2):W473–W476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wells S, Menor S, Hespenheide B, Thorpe MF (2005) Constrained geometric simulation of diffusive motion in proteins. Phys Biol 2(4):S127–S136

    Article  CAS  PubMed  Google Scholar 

  27. Yon JM, Perahia D, Ghélis C (1998) Conformational dynamics and enzyme activity. Biochimie 80(1):33–42

    Article  CAS  PubMed  Google Scholar 

  28. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32(14):e115

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazuyo, F., Hong, S.Y., Yeon, Y.J. et al. Enhancing the activity of Bacillus circulans xylanase by modulating the flexibility of the hinge region. J Ind Microbiol Biotechnol 41, 1181–1190 (2014). https://doi.org/10.1007/s10295-014-1454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1454-z

Keywords

Navigation