Skip to main content

Advertisement

Log in

A global zenith tropospheric delay model with ERA5 and GNSS-based ZTD difference correction

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Highly accurate tropospheric delay information is essential for global navigation satellite system (GNSS) data processing. However, the current models still have limitations such as a lack of systematic difference correction and appropriate fitting functions. We investigated the performances of different order polynomials in developing ERA5 (the fifth generation of European Center for Medium-Range Weather Forecasts Reanalysis)-based zenith tropospheric delay (ZTD) vertical adjustment model, and it is noticed that a cubic polynomial fitting function is optimal. Considering there is a difference between the ERA5 and GNSS-based ZTD, its characteristic is analyzed using 5 years data. This difference is found to have a noticeable variation of the annual period and is modeled in each window, which depends on ERA5-based ZTD vertical adjustment model. An improved ZTD vertical adjustment model is constructed using the modeled difference, and it has a 20% improvement in accuracy compared with that of ERA5-based ZTD vertical adjustment model. When the proposed ZTD vertical adjustment model is used to establish a ZTD empirical global grid model, the model, which includes systematic differences correction, has an accuracy improvement of 6 and 2%, respectively, compared with GGZTD-H (global grid zenith tropospheric delay) and without correction models. The proposed model also exhibits superior performance in precise point positioning, particularly in the vertical direction. This ZTD empirical global grid model delivers highly accurate ZTD values and can thus be a viable option for GNSS precise positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig. 7
Fig.8
Fig.9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The ERA5 data can be accessed at https://cds.climate.copernicus.eu/cdsapp#!/search?text=ERA5/. The IGS data can be found at https://cddis.nasa.gov/archive/gnss/products/.

References

  • Black HD (1978) An easily implemented algorithm for the tropospheric range correction. J Geophys Res 83(B4):1825–1828

    Article  Google Scholar 

  • Böhm J, Möller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved blind model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441

    Article  Google Scholar 

  • Byun SH, Bar-Sever YE (2009) A new type of troposphere zenith path delay product of the international GNSS service. J Geod 83(3–4):1–7. https://doi.org/10.1007/s00190-008-0288-8

    Article  Google Scholar 

  • Chen P, Ma Y, Liu H, Zheng N (2020) A new global tropospheric delay model considering the spatiotemporal variation characteristics of ZTD with altitude coefficient. Earth Space Sci 7:e2019EA000888

    Article  Google Scholar 

  • Guo L, Huang L, Li J, Liu L, Huang L, Fu B, Xie S, He H, Ren C (2021) A comprehensive evaluation of key tropospheric parameters from ERA5 and MERRA-2 reanalysis products using radiosonde data and GNSS measurements. Remote Sens 13:3008

    Article  Google Scholar 

  • Hersbach H et al (2020) The ERA5 global reanalysis. Q J Roy Meteor Soc 146:1999–2049

    Article  Google Scholar 

  • Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • Hu Y, Yao Y (2019) A new method for vertical stratification of zenith tropospheric delay. Adv Space Res 63(9):2857–2866

    Article  Google Scholar 

  • Huang L, Jiang W, Liu L, Chen H, Ye S (2019) A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. J Geod 93:159–176

    Article  Google Scholar 

  • Huang L, Zhu G, Liu L, Chen H, Jiang W (2021) A global grid model for the correction of the vertical zenith total delay based on a sliding window algorithm. GPS Solut 25:98. https://doi.org/10.1007/s10291-021-01138-7

    Article  Google Scholar 

  • Huang L, Zhu G, Peng H, Liu L, Ren C, Jiang W (2023) An improved global grid model for calibrating zenith tropospheric delay for GNSS applications. GPS Solut 27:17

    Article  Google Scholar 

  • Krueger E, Schüler T, Hein G, Martellucci A, Blarzino G (2004) Galileo tropospheric correction approaches developed within GSTB-V1. In Proceedings of ENC-GNSS 2004, 16–19, May, Rotterdam, The Netherlands

  • Leandro RF, Langley RB, Santos MC (2008) UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solut 12:65–70

    Article  Google Scholar 

  • Leandro RF, Santos MC, Langley RB (2006) UNB neutral atmosphere models: development and performance. Proceedings of the ION NTM 2006 Monterey, California USA, January 18–20, 564–573

  • Li W, Yuan Y, Ou J, Chai Y, Li Z, Liou Y, Wang N (2015) New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop. J Geod 89(1):73–80

    Article  Google Scholar 

  • Li H, Li B, Lou L, Yang L, Wang J (2017) Impact of GPS differential code bias in dual- and triple-frequency positioning and satellite clock estimation. GPS Solut 21(3):897–903

    Article  Google Scholar 

  • Li X, Huang J, Li X, Lyu H, Wang B, Xiong Y, Xie W (2021) Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation. GPS Solut 25:107

    Article  Google Scholar 

  • Li H, Li X, Gong X (2022) Improved method for the GPS high-precision real-time satellite clock error service. GPS Solut 26:136. https://doi.org/10.1007/s10291-022-01327-y

    Article  Google Scholar 

  • Lu C, Zus F, Ge M, Heinkelmann R, Dick G, Wickert J, Schuh H (2016) Tropospheric delay parameters from numerical weather models for multi-GNSS precise positioning. Atmos Meas Tech 9:5965–5973

    Article  Google Scholar 

  • Lu C, Li X, Zus F, Heinkelmann R, Dick G, Ge M, Wickert J, Schuh H (2017) Improving BeiDou real-time precise point positioning with numerical weather models. J Geod 91(9):1019–1029

    Article  Google Scholar 

  • Malys S, Jensen P (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys Res Lett 17:651–654. https://doi.org/10.1029/GL017i005p00651

    Article  Google Scholar 

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246

    Article  Google Scholar 

  • Penna N, Dodson A, Chen W (2001) Assessment of EGNOS tropospheric correction model. J Navig 54:37–55

    Article  Google Scholar 

  • Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. Bulletin Géodésique 105(1):279–298

    Article  Google Scholar 

  • Schüler T (2014) The TropGrid2 standard tropospheric correction model. GPS Solut 18:123–131

    Article  Google Scholar 

  • Sun J, Wu Z, Yin Z (2017) A simplified GNSS tropospheric delay model based on the nonlinear hypothesis. GPS Solut 21(4):1735–1745

    Article  Google Scholar 

  • Wang J, Balidakis K, Zus F, Chang X, Ge M, Heinkelmann R, Schuh H (2022) Improving the vertical modeling of tropospheric delay. Geophys. Res. Lett. 49(5):e2021GL096732

    Article  Google Scholar 

  • Wielgosz P, Cellmer S, Rzepecka Z, Paziewski J, Grejner-Brzezinska D (2011) Troposphere modeling for precise GPS rapid static positioning in mountainous areas. Meas Sci Technol 22:045101. https://doi.org/10.1088/0957-0233/22/4/045101

    Article  Google Scholar 

  • Wilgan K, Hadas T, Hordyniec P, Bosy J (2017) Real-time precise point positioning augmented with high-resolution numerical weather prediction model. GPS Solut 21:1341–1353. https://doi.org/10.1007/s10291-017-0617-6

    Article  Google Scholar 

  • Xia P, Tong M, Ye S, Qian J, Hu F (2023) Establishing a high-precision real-time ZTD model of China with GPS and ERA5 historical data and its application in PPP. GPS Solut 27:2. https://doi.org/10.1007/s10291-022-01338-9

    Article  Google Scholar 

  • Yao Y, He C, Zhang B, Xu C (2013) A new global zenith tropospheric delay model GZTD. Chin J Geophys 56(7):2218–2227

    Google Scholar 

  • Yao Y, Hu Y, Yu C, Zhang B, Guo J (2016) An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. Nonlinear Proc Geoph 23(3):127–136

    Article  Google Scholar 

  • Yao Y, Xu X, Hu Y (2017) Precision analysis of GGOS tropospheric delay product and its application in PPP. Acta Geodaetica Et Cartographica Sinica 46(3):278–287

    Google Scholar 

  • Zhang H, Yuan Y, Li W, Zhang B, Ou J (2018) A grid-based tropospheric product for China using a GNSS network. J Geod 92(7):765–777

    Article  Google Scholar 

  • Zhang W, Lou Y, Liu W, Huang J, Zhang H (2020) Rapid troposphere tomography using adaptive simultaneous iterative reconstruction technique. J Geod 94:76

    Article  Google Scholar 

  • Zhang B, Hou P, Zha J, Liu T (2022) PPP–RTK functional models formulated with undifferenced and uncombined GNSS observations. Satell Navig 3:3. https://doi.org/10.1186/s43020-022-00064-4

    Article  Google Scholar 

  • Zhao J, Song S, Chen Q, Zhou W, Zhu W (2014) Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile. Chin J Geophys 57(10):3140–3153

    Google Scholar 

  • Zhu G, Huang L, Yang Y, Li J, Zhou L, Liu L (2022) Refining the ERA5-based global model for vertical adjustment of zenith tropospheric delay. Satell Navig 3:27. https://doi.org/10.1186/s43020-022-00088-w

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC) (Nos. 42174019 and 41974025), the Fundamental Research Funds for the Central Universities, Guangxi Natural Science Foundation of China (Nos. 2023GXNSFAA026355), and the State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (Nos. SKLGED2023-3-1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.L.; methodology, H.L. G.Z. and L.H.; validation,H.L. and G.Z.; writing the main manuscript, H.L.; formal analysis, Q.K. and H.W. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ge Zhu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, G., Kang, Q. et al. A global zenith tropospheric delay model with ERA5 and GNSS-based ZTD difference correction. GPS Solut 27, 154 (2023). https://doi.org/10.1007/s10291-023-01503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-023-01503-8

Keywords

Navigation