Skip to main content

Advertisement

Log in

Effect of the polar cap ionospheric sporadic-E layer on GNSS-based positioning: a case study at Resolute Bay, Canada, September 5, 2012

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We focus on the impacts of the polar cap ionospheric sporadic-E (Es) layer that occurred at Resolute Bay, Canada, on September 5, 2012, on the quality of the Global Positioning System (GPS) observable and the positioning performance. Mainly, we are concerned about the relationship between the thin Es layer and the ionosphere scintillation and the reason behind the degraded positioning performance during the event of the polar cap Es. The results show that the polar cap Es can trigger weak-to-moderate amplitude scintillation and the maximum positioning errors in the up component for the Ionospheric-Free Precise Point Positioning (IF-PPP) model can reach up to 0.51 m while that for the Uncombined PPP (UC-PPP) model can reach 1.20 m. The maximum positioning errors occur simultaneously with the time of the maximum amplitude scintillation induced by the polar cap Es. The degraded positioning performance can be attributed mostly to falsely detected cycle slips (CSs), which are influenced by the polar cap Es layer-induced scintillation. To mitigate this, we propose the 3-sigma rule to determine the threshold of the CS detection observables. The preliminary results show that compared with the commonly adopted threshold values, the positioning accuracy improvement in the up component is 14.1% for the IF-PPP model while the corresponding improvement is 40.8% for the UC-PPP model, suggesting that the high accuracy positioning performance can be achieved in the high latitude region by statistic characterization of the CS thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The GPS and ionosonde data are provided by CHAIN at http://chain.physics.unb.ca/; the space weather environment data are from Goddard Space Flight Center Space Physics Data Facility OMNIWeb at https://omniweb.gsfc.nasa.gov/.

References

  • Arras C, Wickert J, Beyerle G, Heise S, Schmidt T, Jacobi C (2008) A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys Res Lett 35(14). https://doi.org/10.1029/2008gl034158

  • Banville S, Langley RB (2012) Mitigating the impact of ionospheric cycle slips in GNSS observations. J Geodesy 87(2):179–193. https://doi.org/10.1007/s00190-012-0604-1

    Article  Google Scholar 

  • Basu S, Basu S, MacKenzie E, Whitney HE (1985) Morphology of phase and intensity scintillations in the auroral oval and polar cap. Radio Sci 20(3):347–356. https://doi.org/10.1029/RS020i003p00347

    Article  Google Scholar 

  • Basu S, Groves K, Basu S, Sultan P (2002) Specification and forecasting of scintillations in communication/navigation links: current status and future plans. J Atmos Solar Terr Phys 64(16):1745–1754. https://doi.org/10.1016/S1364-6826(02)00124-4

    Article  Google Scholar 

  • Berdermann J, Kriegel M, Banyś D, Heymann F, Hoque M, Wilken V, Borries C, Heßelbarth A, Jakowski N (2018) Ionospheric response to the X9. 3 Flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather 16(10):1604–1615. https://doi.org/10.1029/2018SW001933

    Article  Google Scholar 

  • Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202. https://doi.org/10.1029/GL017i003p00199

    Article  Google Scholar 

  • Boehm J, Niell AE, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Rese Lett 33(7). https://doi.org/10.1029/2005GL025546

  • Coster A, Komjathy A (2008) Space weather and the global positioning system. Space Weather 6(6). https://doi.org/10.1029/2008sw000400

  • Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software version 5.2. University of Bern, Bern Open Publishing

  • Demyanov V, Yasyukevich YV (2021) Space weather: risk factors for Global Navigation Satellite Systems. Solar-Terrestrial Phys 7(2):28–47. https://doi.org/10.12737/stp-72202104

    Article  Google Scholar 

  • Doherty PH, Delay SH, Valladares CE, Klobuchar JA (2003) Ionospheric scintillation effects on GPS in the equatorial and auroral regions. Navigation 50(4):235–245. https://doi.org/10.1002/j.2161-4296.2003.tb00332.x

    Article  Google Scholar 

  • Guo K, Vadakke Veettil S, Weaver BJ, Aquino M (2021) Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices. J Geodesy 95(30). https://doi.org/10.1007/s00190-021-01475-y

  • Haldoupis C (2011) A Tutorial Review on Sporadic E Layers. In: Abdu M, Pancheva D (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_29

  • Hatch R (1982) The synergism of code and carrier measurements. In: Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning. New Mexico State University, Las Cruces, NM, pp 1213-1232

  • Jayachandran PT et al (2009) Canadian High Arctic Ionospheric Network (CHAIN). Radio Sci 44. https://doi.org/10.1029/2008rs004046

  • Ju B, Gu D, Chang X, Herring TA, Duan X, Wang Z (2017) Enhanced cycle slip detection method for dual-frequency BeiDou GEO carrier phase observations. GPS Solut 21:1227–1238. https://doi.org/10.1007/s10291-017-0607-8

    Article  Google Scholar 

  • Juan JM, Sanz J, González-Casado G, Rovira-Garcia A, Camps A, Riba J, Barbosa J, Blanch E, Altadill D, Orus R (2018) Feasibility of precise navigation in high and low latitude regions under scintillation conditions. J Space Weather Space Clim 8:A05. https://doi.org/10.1051/swsc/2017047

    Article  Google Scholar 

  • Khon VC, Mokhov I, Latif M, Semenov V, Park W (2010) Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Clim Change 100:757–768. https://doi.org/10.1007/s10584-009-9683-2

    Article  Google Scholar 

  • Knight M, Finn A (1998) The effects of ionospheric scintillations on GPS. In: Proc. ION GPS 1998, Institute of Navigation, Kansas City, MO, USA, September 17–20, pp 555–564

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying. John Wiley & Sons

    Book  Google Scholar 

  • Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geodesy 85:171–183. https://doi.org/10.1007/s00190-010-0426-y

    Article  Google Scholar 

  • Luo X, Gu S, Lou Y, Chen B, Song W (2019) Better thresholds and weights to improve GNSS PPP under ionospheric scintillation activity at low latitudes. GPS Solut 24:1–12. https://doi.org/10.1007/s10291-019-0924-1

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. https://doi.org/10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Melbourne W (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of the first international symposium on precise positioning with the Global Positioning System, US Department of Commerce Rockville, Maryland, pp 373–386

  • Pavelyev AG, Liou YA, Wickert J, Schmidt T, Pavelyev AA, Liu SF (2007) Effects of the ionosphere and solar activity on radio occultation signals: application to CHAllenging Minisatellite Payload satellite observations. J Geophys Res Space Phys.112(A6). https://doi.org/10.1029/2006ja011625

  • Petit G, Luzum B (2010) IERS conventions (2010). In: Bureau International des Poids et mesures sevres (France)

  • Petrie EJ, Hernández-Pajares M, Spalla P, Moore P, King MA (2011) A review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32:197–253. https://doi.org/10.1007/s10712-010-9105-z

    Article  Google Scholar 

  • Prikryl P, Jayachandran P, Mushini S, Pokhotelov D, MacDougall J, Donovan E, Spanswick E, St-Maurice J-P (2010) GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Annales Geophysicae 28:1307–1316. https://doi.org/10.5194/angeo-28-1307-2010

    Article  Google Scholar 

  • Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. Bull Géodésique 105:279–298. https://doi.org/10.1007/BF02521844

    Article  Google Scholar 

  • Skone S, Knudsen K, De Jong M (2001) Limitations in GPS receiver tracking performance under ionospheric scintillation conditions. Phys Chem Earth Part A 26:613–621. https://doi.org/10.1016/S1464-1895(01)00110-7

    Article  Google Scholar 

  • Skone S, Lachapelle G, Yao D, Yu W, Watson R (2005) Investigating the impact of ionospheric scintillation using a GPS software receiver. In: Proc. ION GNSS 2005, Institute of Navigation, Long Beach, CA, USA, September 13–16, 2005, pp 1126–1137

  • Sreeja V, Aquino M, Elmas Z (2011) Impact of ionospheric scintillation on GNSS receiver tracking performance over Latin America: Introducing the concept of tracking jitter variance maps. Space Weather 9(10). https://doi.org/10.1029/2011SW000707

  • Sreeja VV, Aquino M, Marques HA, Moraes A (2020) Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J Geodesy 94:1–10. https://doi.org/10.1007/s00190-020-01345-z

    Article  Google Scholar 

  • Takasu T (2013) RTKLIB ver. 2.4. 2 Manual. RTKLIB: An Open Source Program Package for GNSS Positioning, http://www.rtklib.com.

  • Van Dierendonck A, Arbesser-Rastburg B (2004) Measuring ionospheric scintillation in the equatorial region over Africa, including measurements from SBAS geostationary satellite signals. In: Proc. ION GNSS 2004, Institute of Navigation, Long Beach, CA,USA, September 21–24, 2004, pp 316–324

  • Wang Y, Jayachandran PT, Themens DR, Mccaffrey AM, Zhang Q-H, David S, Chadwick R (2021) A case study of polar cap sporadic-E layer associated with TEC variations. Remote Sens 13(7):1324. https://doi.org/10.3390/rs13071324

    Article  Google Scholar 

  • Whitehead J (1989) Recent work on mid-latitude and equatorial sporadic-E. J Atmos Terr Phys 51:401–424. https://doi.org/10.1016/0021-9169(89)90122-0

    Article  Google Scholar 

  • Wubbena G (1985) Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements. In: Proceedings 1st international symposium on precise positioning with the global positioning system. US Department of Commerce, pp 403–412

  • Xiong C, Yin F, Luo X, Jin Y, Wan X (2019) Plasma patches inside the polar cap and auroral oval: the impact on the spaceborne GPS receiver. J Space Weather Space Clim 9:A25. https://doi.org/10.1051/swsc/2019028

  • Yeh KC, Liu C-H (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70:324–360

    Article  Google Scholar 

  • Yasyukevich Y, Astafyeva E, Padokhin A, Ivanova V, Syrovatskii S, Podlesnyi A (2018) The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation. Space Weather 16:1013–1027. https://doi.org/10.1029/2018SW001932

    Article  Google Scholar 

  • Yu B, Xue X, Xa Y, Yang C, Yu C, Dou X, Ning B, Hu L (2019) The global climatology of the intensity of the ionospheric sporadic E layer. Atmos Chem Phys 19:4139–4151. https://doi.org/10.5194/acp-19-4139-2019

    Article  Google Scholar 

  • Yue X, Schreiner WS, Pedatella NM, Kuo Y-H (2016) Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather 14:285–299. https://doi.org/10.1002/2015SW001340

    Article  Google Scholar 

  • Zhang X, Guo F, Zhou P (2014) Improved precise point positioning in the presence of ionospheric scintillation. GPS Solutions 18(1):51–60. https://doi.org/10.1007/s10291-012-0309-1

    Article  Google Scholar 

  • Zhou F, Dong D, Li W, Jiang X, Wickert J, Schuh H (2018) GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions 22(2):22-33. https://doi.org/10.1007/s10291-018-0699-9

    Article  Google Scholar 

Download references

Acknowledgements

The study is funded by the National Natural Science Foundation of China (No.42004012, 42004025), Natural Science Foundation of Shandong Province, China(No.ZR2020QD048), State Key Laboratory of Geo-Information Engineering (No.SKLGIE2019-Z-2-2), State Key Laboratory of Geodesy and Earth Dynamics (No. SKLGED-2021-3-4) and by the project RTI2018-094295-B-I00 funded by the MCIN/AEI 10.13039/501100011033 which is co-founded by the FEDER program. We acknowledge the usage of the GAMP package for the positioning performances at https://www.ngs.noaa.gov/gps-toolbox/. We thank the anonymous reviewers for the comments and suggestions, which significantly improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhe Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W., Wang, Y., Rovira-Garcia, A. et al. Effect of the polar cap ionospheric sporadic-E layer on GNSS-based positioning: a case study at Resolute Bay, Canada, September 5, 2012. GPS Solut 26, 60 (2022). https://doi.org/10.1007/s10291-022-01246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-022-01246-y

Keywords

Navigation