Skip to main content
Log in

A simplified GNSS tropospheric delay model based on the nonlinear hypothesis

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We have derived a global zenith tropospheric delay simplified model (GZTDS), assuming that the troposphere is a nonlinear system and can be handled as a black box. The GZTDS and its variation in time can be expressed as a series of cosine components, which represent various periods of tropospheric delay changes. Undetermined coefficients are extracted by data fitting from the mean sea level historical data of the global geodetic observing system atmosphere on a 2° × 2.5° grid. A combination of our model and the Vienna Mapping Function 1 can predict slant delays for global navigation satellite system sites using the zenith angle and nearest grid coordinates as the input and generate a global slant tropospheric delay simplified model (GSTDS) and its extension. Comparisons with the zenith delays provided by the International GNSS Service at 358 sites show that the biases are between −3.36 and 2.41 cm, and the mean standard deviation is 3.46 cm for the year 2014. This result is at the same level of accuracy as the global pressure and temperature 2 wet model (GPT2w), with the GZTDS requiring no local meteorological parameters. The accuracy of GSTDS depends on the zenith angle and shows nonlinear characteristics. Several statistics of biases and standard deviations illustrate model adaptation with respect to latitude or altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Black HD (1978) An easily implemented algorithm for the tropospheric range correction. J Geophys Res B4:1825–1828

    Article  Google Scholar 

  • Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31(1):L01603. doi:10.1029/2003GL018984

    Article  Google Scholar 

  • Böhm J, Niell AE, Tregoning P, Schuh H (2006a) Global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33(7):L07304. doi:10.1029/2005GL025546

    Google Scholar 

  • Böhm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Böhm J, Möller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441. doi:10.1007/s10291-014-0403-7

    Article  Google Scholar 

  • Chen Q, Song S, Zhu W (2011) The establishment of the global model (SHAO-G) for the tropospheric delay. In: Proceedings of the second China satellite navigation conference 2011

  • Collins JP, Langley RB (1997) A tropospheric delay model for the user of the wide area augmentation system. In: Final contract report for Nav Canada, Department of Geodesy and Geomatics Engineering Technical Report No. 187, University of New Brunswick, Fredericton, NB, Canada

  • Hackman C, Byram S (2012) IGS troposphere working group 2012. In: Dach R, Jean Y (eds) International GNSS service—technical report 2012, pp 195–199

  • Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • Jin SG, Park JU, Cho JH, Park PH (2007) Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J Geophys Res 112:D09110. doi:10.1029/2006JD007772

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Atmos Met Soc 83:1631–1643

    Article  Google Scholar 

  • Karbon M (2009) GGOS atmosphere—an overview. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung, Atmosphärenprozessoren, Oberpfaffenhofen-Wessling, November 27

  • Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073. doi:10.1002/grl.50288

    Article  Google Scholar 

  • Leandro RF, Langley RB, Santos MC (2007) UNB3m_pack: a neutral atmosphere delay package for radiometric techniques. GPS Solut 12(1):65–70

    Article  Google Scholar 

  • Li W, Yuan Y, Ou J, Li H, Li Z (2012) A new Global Zenith Tropospheric Delay model IGGtrop for GNSS applications. Chin Sci Bull 57:2132–2139. doi:10.1007/s11434-012-5010-9

    Article  Google Scholar 

  • Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7(2):223–231

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. Part II, refraction corrections in satellite geodesy. Bull Géod 107:13–34

    Article  Google Scholar 

  • Schüler T (2014) The TropGrid2 standard tropospheric correction model. GPS Solut 18(1):123–131

    Article  Google Scholar 

  • Song S, Zhu W, Chen Q (2010) The establishment of China region model (SHAO) for the tropospheric delay. In: Proceedings of the first China satellite navigation conference 2010

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J Meteorol Soc 131(162):2961–3021. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Yao Y, He C, Zhang B, Xu C (2013) A new Global Zenith Tropospheric Delay model GZTD. Chin J Geophys 56(7):2218–2227. doi:10.6038/cjg20130709

    Google Scholar 

Download references

Acknowledgements

This work has been supported by National Natural Science Foundation of China (Nos. 61571167, 61471142, 61102084) and Research Fund for the Doctoral Program of Higher Education of China (No. 20112302110033). We would like to thank GGOS Atmosphere and the IGS organization for providing high quality data and products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wu, Z., Yin, Z. et al. A simplified GNSS tropospheric delay model based on the nonlinear hypothesis. GPS Solut 21, 1735–1745 (2017). https://doi.org/10.1007/s10291-017-0644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0644-3

Keywords

Navigation