Skip to main content
Log in

Solving positioning problems with minimal data

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Global and local positioning systems (LPS) make use of nonlinear equations systems to calculate coordinates of unknown points. There exist several methods, such as Sturmfels’ resultant, Groebner bases and least squares, for dealing with this kind of equations. We introduce two methods for solving this problem with the aid of symbolic techniques relying on closed-form solutions for the solution set of a system of linear equations. We suppose the receiver just detects or chooses minimal data, i.e., four satellites in global positioning systems (GPS) or three stations in LPS. Both methods proceed by parameterizing the line joining two solution points to later solve a nonlinear univariate equation, either quadratic or with degree smaller than 6. The first one uses the Generalized Cramer Identities, which is a different presentation of the generalized Moore–Penrose inverse, and ends with a degree 6 univariate equation for GPS and a degree 4 univariate equation for LPS. The second one solves the system by dealing with a more geometric way, ending with a quadratic equation. Our approach covers all possible cases with a finite number of solutions, while Bancroft’s method cannot be applied when the four satellites, taking the clock bias as fourth coordinate, and the origin lay in the same hyperplane of \({\mathbb{R}}^{4}\), and the method by Grafarend and Shan fails when the four satellites are in the same plane in \({\mathbb{R}}^{3}\). The two proposed methods fail only when the pseudorange 4 point problem has infinite solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin

    Google Scholar 

  • Awange JL, Grafarend EW, Paláncz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics. Springer, Berlin

    Book  Google Scholar 

  • Bancroft S (1985) An Algebraic Solution of the GPS Equations. IEEE Trans Aerosp Electron Syst 21(7):56–59

    Article  Google Scholar 

  • Chafee J, Abel J (1991) Existence and uniqueness of GPS solutions. IEEE Trans Aerosp Electron Syst 27(6):952–956

    Article  Google Scholar 

  • Chafee J, Abel J (1994) On the exact solutions of pseudorange equations. IEEE Trans Aerosp Electron Syst 30(4):1021–1030

    Article  Google Scholar 

  • Diaz-Toca G, Gonzalez-Vega L, Lombardi H (2005) Generalizing Cramer’s rule: solving uniformly linear systems of equations. SIAM J Matrix Anal Appl 27(3):621–637

    Article  Google Scholar 

  • Grafarend EW, Shan J (1996) A closed-form solution of the nonlinear pseudo-ranging equations (GPS). Artif Satell Planet Geodesy 31(3):133–147

    Google Scholar 

  • Grafarend EW, Shan J (2002) GPS Solutions: closed forms, critical and special configurations of P4P. GPS Solut 5(3):29–41

    Article  Google Scholar 

  • Kleusberg A (2003) Analytical GPS navigation solution. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy-The Challenge of the 3rd Millennium. Springer, Berlin Heidelberg, p 93–96

  • Oszczak B (2014) GNSS positioning algorithms using methods of reference point indicators. Artif Satell 49(1):21–32

    Article  Google Scholar 

  • Oszczak B, Sitnik E (2013) The algorithm for determining the coordinates of a point in three-dimensional space by using the auxiliary point. Artif Satell 48(4):141–145

    Article  Google Scholar 

  • The Sage Developers (2015) Sage Mathematics Software (Version 6.6). http://www.sagemath.org

  • Tsimis E (1973) Critical configurations (determinantal loci) for range and range-difference satellite networks. Report no 191, Department of Geodetic Science, The Ohio State University, Columbus, OH

Download references

Acknowledgments

Jorge Caravantes and Laureano Gonzalez-Vega are partially supported by the Spanish Ministerio de Economía y Competitividad and by the European Regional Development Fund (ERDF), under the project MTM2014-54141-P. Alejandro Piñera is partially supported by Spanish Ministerio de Economía y Competitividad and by the European Regional Development Fund (ERDF), under the Projects MTM2013-45588-C3-1-P and FC-15-GRUPIN14-142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Caravantes.

Appendix: Generalized Cramer Identities

Appendix: Generalized Cramer Identities

In this appendix we deduce the Generalized Cramer Identities which will be used for solving the linear systems of equations in (3) and (5). All the results here are taken from Diaz-Toca et al. (2005). Let \(A \in {\mathbb{R}}^{m \times n}\) be any matrix. Let us introduce \(A^\circ \in {\mathbb{R}}\left( t \right)^{m \times n}\) as the product

$$A^\circ = Q_{n}^{ - 1} A^{t} Q_{m}$$

where \(Q_{n} = {\text{diagonal}}\left( {1,t,t^{2} , \ldots ,t^{n - 1} } \right)\), and \(Q_{m} = {\text{diagonal}}\left( {1,t,t^{2} , \ldots ,t^{m - 1} } \right)\). In practice, if \(A = \left( {a_{ij} } \right)\) then \(A^\circ = \left( {t^{i - j} a_{j,i} } \right)\). For instance, we would have

$$\begin{aligned} &A = \left[ {\begin{array}{*{20}c} {a_{11} } & {\begin{array}{*{20}c} {a_{12} } & {a_{13} } & {a_{14} } \\ \end{array} } \\ {\begin{array}{*{20}c} {a_{21} } \\ {a_{31} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{22} } & {a_{23} } & {a_{24} } \\ {a_{32} } & {a_{33} } & {a_{34} } \\ \end{array} } \\ \end{array} } \right], \\ \quad &A^\circ = \left[ {\begin{array}{*{20}c} {a_{11} } & {\begin{array}{*{20}c} {ta_{21} } & {t^{2} a_{31} } \\ \end{array} } \\ {\begin{array}{*{20}c} {t^{ - 1} a_{12} } \\ {t^{ - 2} a_{13} } \\ {t^{ - 3} a_{14} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{22} } & {ta_{32} } \\ {t^{ - 1} a_{23} } & {a_{33} } \\ {t^{ - 2} a_{24} } & {t^{ - 1} a_{34} } \\ \end{array} } \\ \end{array} } \right] \end{aligned}$$
(A 1)

when \(n = 3\) and \(m = 4\). With this notation, we can introduce the following definition:

Definition

(Generalized Gram polynomials and coefficients) The generalized Gram polynomials, \({\mathcal{G}}_{k}^{'} \left( A \right)\left( t \right) = a_{k} \left( t \right) \in {\mathbb{R}}\left[ {t,\frac{1}{t}} \right]\), and the generalized Gram coefficients, \({\mathcal{G}}_{kl}^{'} \left( A \right) = a_{kl} \in {\mathbb{R}}\), are given by:

$$\left\{ {\begin{array}{*{20}l} \begin{aligned} \det \left( {I_{m} + zAA^\circ } \right) = 1 + a_{1} \left( t \right)z + \cdots a_{m} \left( t \right)z^{m} , \hfill \\ a_{k} \left( t \right) = t^{{ - k\left( {n - k} \right)}} \left( {\mathop \sum \limits_{i = 0}^{{k\left( {m + n - 2k} \right)}} a_{k,l} t^{l} } \right) \hfill \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(A 2)

We also define \({\mathcal{G}}_{0}^{'} \left( A \right)\left( t \right) = 1\) and \({\mathcal{G}}_{l}^{'} \left( A \right)\left( t \right) = 0\) for \(l > m\).

Generalized Gram coefficients provide the rank of the given matrix A. Next result is Lemma 2.4 of Diaz-Toca et al. (2005).

Lemma

Generalized Gram conditions for rank:

  1. 1.

    \({\rm{rank}}\left(A \right) \le r \ \Leftrightarrow \ {\mathcal{G}}_k^{\prime}\left(A \right)\left(t \right) = 0, \ \forall \,k \ge r,\)

  2. 2.

    \({\rm{rank}}\left(A \right) = r \, \Leftrightarrow \,{\cal G}_r^{\prime}\left(A \right)\left(t \right) \ne 0\) and \({\mathcal{G}}_{k}^{\prime} \left(A \right)\left(t \right) = 0,\quad \forall \, k > r\).

The solution of a linear system of equations is found via the Generalized Moore–Penrose inverse of A, as can be seen in the following theorem.

Theorem

(Theorem 2.7 of Diaz-Toca et al. 2005). Let \(a_{k\left( t \right)} = {\mathcal{G}}_{k}^{'} \left( A \right), v \in F\) and \({\text{rank}}\left( A \right) = k\) . Then

  1. 1.

    The generalized MoorePenrose inverse of \(A \in {\mathcal{M}}_{m \times n} \left( {\mathbb{R}} \right) \subset {\mathcal{M}}_{m \times n} \left( {{\mathbb{R}} ( {{t)}}} \right)\) is given by

    $$A^{{\dag_{r,t} }} = a_{r}^{ - 1} \left( {a_{r - 1} I_{n} - a_{r - 2} A^{ \circ } A + \cdots + \left( { - 1} \right)^{r - 1} \left( {A^{ \circ } A} \right)^{r - 1} } \right)A^{ \circ };$$
  2. 2.

    The linear system of equations Ax = v has a solution if and only if \({\mathcal{G}}_{r}^{'} \left( {A|v} \right) = 0\).

  3. 3.

    If \(v \in Im A\) then \(x = A^{{\dag_{r,t} }} v\) is a solution of the linear system of equations Ax = v. Moreover, it is the unique solution in the linear space generated by the columns of A.

Now, we are able to introduce the Generalized Cramer Identities. First of all, we need to write Gram coefficients of A as sums of squares of minors.

Lemma

(Lemma 2.9 in Diaz-Toca et al. 2005) Let \(A \in {\mathcal{M}}_{n \times n} \left( {\mathbb{R}} \right) \subset {\mathcal{M}}_{n \times n} \left( {{\mathbb{R}}\left( t \right)} \right)\) and \(\mu_{\alpha ,\beta }\) be the k-minor where the rows and columns retained are given by subscripts \(\alpha = \left\{ {\alpha_{1} , \ldots , \alpha_{k} } \right\} \subset \left\{ {1, \ldots ,m} \right\}\) and \(\beta = \left\{ {\beta_{1} , \ldots ,\beta_{k} } \right\} \subset \left\{ {1, \ldots ,n} \right\}\) . If \(\left| \alpha \right| = \mathop \sum \nolimits_{i} \alpha_{i}\) and \(\left| \beta \right| = \mathop \sum \nolimits_{i} \beta_{i}\) , define \(S_{m,n,k,l}\) as

$$S_{m,n,k,l} = \left\{ {\left( {\alpha ,\beta } \right):\left| \alpha \right| = \left| \beta \right| = l} \right\}$$

Then,

$${\mathcal{G}}_{k,l}^{'} \left( A \right) = \mathop \sum \limits_{{\left( {\alpha ,\beta } \right) \in S_{m,n,k,l} }} \mu_{\alpha ,\beta }^{2}$$
(A 3)

is the formula for the Generalized Gram coefficient \(a_{k,l} = {\mathcal{G}}_{k,l}^{'} \left( A \right)\).

Remark

The generalized Gram coefficients, \({\mathcal{G}}_{k,l}^{'} \left( A \right)\), are always non-negative.

Given two subscripts \(\alpha = \left\{ {\alpha_{1} , \ldots ,\alpha_{k} } \right\} \subset \left\{ {1, \ldots ,m} \right\}\) and \(\beta = \left\{ {\beta_{1} , \ldots ,\beta_{k} } \right\} \subset \left\{ {1, \ldots ,n} \right\},\) we define \({\text{Adj}}_{\alpha ,\beta } = \left( {I_{n} } \right)_{1:n,\beta } {\text{Adj}}\left( {A_{\alpha ,\beta } } \right)\left( {I_{m} } \right)_{\alpha ,1:m}\), where \({\text{Adj}}\left( {A_{\alpha ,\beta } } \right)\) is the adjoint of the submatrix of A where the rows and the columns retained are given by subscripts α and β, respectively. In a similar way, the submatrices \(\left( {I_{n} } \right)_{1:n,\beta }\) and \(\left( {I_{m} } \right)_{\alpha ,1:m}\) are obtained retaining the rows labeled by α and the columns labeled by β of the identity matrices \(I_{m}\) and \(I_{n}\), respectively.

With this notation, it is possible to prove that the following Cramer identity holds

$$\mu_{\alpha ,\beta } v = A {\text{Adj}}_{\alpha ,\beta } \left( A \right)v$$
(A 4)

for every subscript pair \(\left( {\alpha ,\beta } \right)\) and every vector \(v \in Im A\). Notice that if \(A \in {\mathcal{M}}_{n \times n} \left( {\mathbb{R}} \right)\) and \({\text{rank}}\left( A \right) = n\), (A4) reduces to

$$v = \frac{1}{\left| A \right|}A {\text{Adj}}\left( A \right)v$$
(A 5)

which is the classical Cramer identity for representing the unique solution of a linear system of n equations with n unknowns when the rank of the coefficients matrix is equal to n.

Generalized Moore–Penrose pseudo-inverse \(A^{{\dag_{r,t} }}\) can be written as a sum of weighted Cramer identities in the following form (Diaz-Toca et al. 2005, Proposition 2.10).

$$A^{{\dag_{r,t} }} = {\mathcal{G}}_{r}^{'} \left( A \right)\left( t \right)^{ - 1} \mathop \sum \limits_{\alpha ,\beta } \mu_{\alpha ,\beta } t^{\left| \alpha \right| - \left| \beta \right|} \mathrm{Adj}_{\alpha ,\beta } \left( A \right)$$
(A 6)

where the sum is taken over all \(\left( {\alpha ,\beta } \right) \in S_{mnkl}\), with \(0 \le l \le k\left( {m + n - 2k} \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caravantes, J., Gonzalez-Vega, L. & Piñera, A. Solving positioning problems with minimal data. GPS Solut 21, 149–161 (2017). https://doi.org/10.1007/s10291-015-0507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0507-8

Keywords

Navigation