Skip to main content

Advertisement

Log in

Effect of levodopa on postural blood pressure changes in Parkinson disease: a randomized crossover study

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

We investigated the effect of levodopa on postural blood pressure changes in individuals with Parkinson disease (PD) with (PD+OH) and without neurogenic OH (PD−OH).

Methods

We performed a prospective randomized crossover study with autonomic testing performed ON and OFF levodopa. The primary outcome was the change in systolic blood pressure (SBP) from supine to 70° tilt at 3 min (ΔSBP-3’). Secondary outcomes included indices of baroreflex function and blood pressure and heart rate during tilt.

Results

We enrolled 40 individuals with PD (21 PD+OH, 19 PD−OH), mean age (SD) 73.2 years (7.9), 13 women (32.5%)). There was no difference in age, sex, disease duration, and severity between PD+OH and PD−OH. Mean difference in ΔSBP-3’ ON versus OFF levodopa in the whole study population was − 3.20 mmHg [− 7.36 to 0.96] (p = 0.14). Mean difference in ΔSBP-3’ was − 2.14 mmHg [− 7.55 to 3.28] (p = 0.45) in PD+OH and − 5.14 mmHg [− 11.63 to 1.35] (p = 0.14) in PD−OH. Mean difference in ΔSBP ON versus OFF levodopa was greater at 7 and 10 min (− 7.52 mmHg [− 11.89 to − 3.15], p = 0.002, and − 7.82 mmHg [− 14.02 to − 1.67], p = 0.02 respectively). Levodopa was associated with lower absolute values of blood pressure in both PD+OH and PD−OH and cardiovascular noradrenergic baroreflex impairment.

Conclusion

Levodopa decreases blood pressure in both PD with and without autonomic failure, but it does not cause a greater fall in blood pressure from supine to standing at 3 min. Levodopa-induced baroreflex sympathetic noradrenergic impairment may contribute to lower blood pressure. Lower standing blood pressure with levodopa may increase the risks of fall and syncope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, GL, upon reasonable request.

References

  1. Jankovic J, Tan EK (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91(8):795–808

    Article  PubMed  Google Scholar 

  2. Noack C, Schroeder C, Heusser K, Lipp A (2014) Cardiovascular effects of levodopa in Parkinson’s disease. Parkinsonism Relat Disord 20(8):815–818

    Article  PubMed  Google Scholar 

  3. McDonald C, Pearce M, Kerr SR, Newton J (2017) A prospective study of the association between orthostatic hypotension and falls: definition matters. Age Ageing 46(3):439–445

    PubMed  Google Scholar 

  4. Lamotte G, Lenka A (2022) Orthostatic hypotension in Parkinson disease: what is new? Neurol Clin Pract 12(5):e112–e115

    Article  PubMed  PubMed Central  Google Scholar 

  5. Velseboer DC, de Haan RJ, Wieling W, Goldstein DS, de Bie RM (2011) Prevalence of orthostatic hypotension in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord 17(10):724–729

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hiorth YH, Pedersen KF, Dalen I, Tysnes OB, Alves G (2019) Orthostatic hypotension in Parkinson disease: a 7-year prospective population-based study. Neurology 93(16):e1526–e1534

    Article  CAS  PubMed  Google Scholar 

  7. Nimmons D, Bhanu C, Orlu M, Schrag A, Walters K (2022) Orthostatic hypotension and antiparkinsonian drugs: a systematic review and meta-analysis. J Geriatr Psychiatry Neurol 35(5):639–654

    Article  PubMed  Google Scholar 

  8. Goldstein DS, Eldadah BA, Holmes C, Pechnik S, Moak J, Saleem A et al (2005) Neurocirculatory abnormalities in Parkinson disease with orthostatic hypotension: independence from levodopa treatment. Hypertension 46(6):1333–1339

    Article  CAS  PubMed  Google Scholar 

  9. Jost WH, Altmann C, Fiesel T, Becht B, Ringwald S, Hoppe T (2020) Influence of levodopa on orthostatic hypotension in Parkinson’s disease. Neurol Neurochir Pol 54(2):200–203

    PubMed  Google Scholar 

  10. Perez-Lloret S, Rey MV, Fabre N, Ory F, Spampinato U, Senard JM et al (2012) Factors related to orthostatic hypotension in Parkinson’s disease. Parkinsonism Relat Disord 18(5):501–505

    Article  PubMed  Google Scholar 

  11. Worth D, Harvey J, Brown J, Lee M (1988) The effects of intravenous L-dopa on plasma renin activity, renal function, and blood pressure in man. Eur J Clin Pharmacol 35(2):137–141

    Article  CAS  PubMed  Google Scholar 

  12. Yue JL, Goshima Y, Miyamae T, Misu Y (1993) Evidence for L-dopa relevant to modulation of sympathetic activity in the rostral ventrolateral medulla of rats. Brain Res 629(2):310–314

    Article  CAS  PubMed  Google Scholar 

  13. Reid JL, Calne DB, George CF, Vakil SD (1972) The action of L(-)-dopa on baroreflexes in parkinsonism. Clin Sci 43(6):851–859

    Article  CAS  PubMed  Google Scholar 

  14. Kaufmann H, Norcliffe-Kaufmann L, Palma JA (2020) Baroreflex dysfunction. N Engl J Med 382(2):163–178

    Article  CAS  PubMed  Google Scholar 

  15. Cheshire WP, Freeman R, Gibbons CH, Cortelli P, Wenning GK, Hilz MJ et al (2021) Electrodiagnostic assessment of the autonomic nervous system: a consensus statement endorsed by the American Autonomic Society, American Academy of Neurology, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 132(2):666–682

    Article  PubMed  Google Scholar 

  16. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601

    Article  PubMed  Google Scholar 

  17. Gibbons CH, Schmidt P, Biaggioni I, Frazier-Mills C, Freeman R, Isaacson S et al (2017) The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol 264(8):1567–1582

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170

    Article  PubMed  Google Scholar 

  19. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W (2012) COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc 87(12):1196–1201

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fanciulli A, Jordan J, Biaggioni I, Calandra-Buonaura G, Cheshire WP, Cortelli P et al (2018) Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS): Endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH). Clin Auton Res 28(4):355–362

    Article  PubMed  PubMed Central  Google Scholar 

  21. Low PA (1993) Autonomic nervous system function. J Clin Neurophysiol 10(1):14–27

    Article  CAS  PubMed  Google Scholar 

  22. Pickering TG, Sleight P (1969) Quantitative index of baroreflex activity in normal and hypertensive subjects using Valsalva’s manoeuvre. Br Heart J 31(3):392

    CAS  PubMed  Google Scholar 

  23. Schrezenmaier C, Singer W, Swift NM, Sletten D, Tanabe J, Low PA (2007) Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol 64(3):381–386

    Article  PubMed  Google Scholar 

  24. Bouhaddi M, Vuillier F, Fortrat JO, Cappelle S, Henriet MT, Rumbach L et al (2004) Impaired cardiovascular autonomic control in newly and long-term-treated patients with Parkinson’s disease: involvement of L-dopa therapy. Auton Neurosci 116(1–2):30–38

    Article  CAS  PubMed  Google Scholar 

  25. Cani I, Guaraldi P, Giannini G, Sambati L, Barletta G, Cortelli P et al (2023) Levodopa-induced orthostatic hypotension in parkinsonism: a red flag of autonomic failure. Eur J Neurol. https://doi.org/10.1111/ene.16061

    Article  PubMed  Google Scholar 

  26. Liu Z, Su D, Zhou J, Wang X, Wang Z, Yang Y et al (2023) Acute effect of levodopa on orthostatic hypotension and its association with motor responsiveness in Parkinson’s disease: results of acute levodopa challenge test. Parkinsonism Relat Disord 115:105860

    Article  CAS  PubMed  Google Scholar 

  27. Gibbons CH, Freeman R (2015) Clinical implications of delayed orthostatic hypotension: a 10-year follow-up study. Neurology 85(16):1362–1367

    Article  PubMed  PubMed Central  Google Scholar 

  28. Torabi P, Ricci F, Hamrefors V, Sutton R, Fedorowski A (2020) Classical and delayed orthostatic hypotension in patients with unexplained syncope and severe orthostatic intolerance. Front Cardiovasc Med 7:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li K, Haase R, Rüdiger H, Reimann M, Reichmann H, Wolz M et al (2017) Subthalamic nucleus stimulation and levodopa modulate cardiovascular autonomic function in Parkinson’s disease. Sci Rep 7(1):7012

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  30. Durrieu G, Senard JM, Rascol O, Tran MA, Lataste X, Rascol A et al (1990) Blood pressure and plasma catecholamines in never-treated parkinsonian patients: effect of a selective D1 agonist (CY 208–243). Neurology 40(4):707–709

    Article  CAS  PubMed  Google Scholar 

  31. Mannelli M, Ianni L, Lazzeri C, Castellani W, Pupilli C, La Villa G et al (1999) In vivo evidence that endogenous dopamine modulates sympathetic activity in man. Hypertension 34(3):398–402

    Article  CAS  PubMed  Google Scholar 

  32. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2(11):669–676

    Article  PubMed  Google Scholar 

  33. Newman DG, Callister R (1999) The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review. Aviat Space Environ Med 70(8):780–789

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the patients for their time and contribution.

Funding

This project was supported by a seed grant from the University of Utah. Guillaume Lamotte received honoraria for his role as managing editor of the journal Clinical Autonomic Research, Panagiotis Kassavetis received research grants from the University of Utah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lamotte.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earl, T., Jridi, A., Thulin, P.C. et al. Effect of levodopa on postural blood pressure changes in Parkinson disease: a randomized crossover study. Clin Auton Res 34, 117–124 (2024). https://doi.org/10.1007/s10286-024-01024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-024-01024-5

Keywords

Navigation