Skip to main content

Advertisement

Log in

Recent advances in establishing fluid biomarkers for the diagnosis and differentiation of alpha-synucleinopathies – a mini review

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

The clinical differentiation between multiple system atrophy (MSA), Parkinson’s disease (PD), dementia with Lewy bodies (DLB), as well as the distinction between these synucleinopathies from other neurodegenerative disorders can be challenging, particularly at early disease stages or when the presentation is atypical. That is also true for predicting the fate of patients with limited or prodromal forms of synucleinopathies such as pure autonomic failure (PAF) or idiopathic REM-sleep behavior disorder (iRBD) which are known to be at risk of developing MSA, PD, or DLB. After discussing current classification concepts of the synucleinopathies, this invited mini-review reflects on two recently described and validated spinal fluid biomarkers, namely neurofilament light chain (NfL) and α-synuclein oligomers detected by protein aggregation assays, that have shown great promise not only as markers differentiating MSA from the Lewy-body synucleinopathies but also as markers that predict future phenoconversion to MSA among patients with PAF. Discussed are the strengths and limitations of these markers, and how they appear to complement each other nicely as a biomarker panel, enhancing the specificity of one of these markers, yet adding further robustness and simplicity to a marker that is technically rather challenging. The review concludes with thoughts on potential next steps in the development of fluid biomarkers in this rapidly emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fanciulli A, Wenning GK (2015) Multiple-system atrophy. N Engl J Med 372:249–263

    Article  PubMed  CAS  Google Scholar 

  2. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  CAS  PubMed  Google Scholar 

  3. Kaufmann H, Hague K, Perl D (2001) Accumulation of alpha-synuclein in autonomic nerves in pure autonomic failure. Neurology 56:980–981

    Article  CAS  PubMed  Google Scholar 

  4. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  CAS  PubMed  Google Scholar 

  5. Walker Z, Possin KL, Boeve BF, Aarsland D (2015) Lewy body dementias. Lancet 386:1683–1697

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coon EA, Mandrekar JN, Berini SE et al (2020) Predicting phenoconversion in pure autonomic failure. Neuroogy 95(7):e889–e897

    Google Scholar 

  7. Coon EA, Singer W (2020) Synucleinopathies. Continu (Minneap Minn) 26:72–92

    Google Scholar 

  8. Kaufmann H, Norcliffe-Kaufmann L, Palma JA et al (2017) Natural history of pure autonomic failure: A United States prospective cohort. Ann Neurol 81:287–297

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singer W, Berini SE, Sandroni P et al (2017) Pure autonomic failure: Predictors of conversion to clinical CNS involvement. Neurology 88:1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coon EA, Singer W, Low PA (2019) Pure autonomic failure. Mayo Clin Proc 94:2087–2098

    Article  PubMed  Google Scholar 

  11. Postuma RB, Gagnon JF, Montplaisir J (2013) Rapid eye movement sleep behavior disorder as a biomarker for neurodegeneration: the past 10 years. Sleep Med 14:763–767

    Article  PubMed  Google Scholar 

  12. Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620

    Article  CAS  PubMed  Google Scholar 

  13. Hague K, Lento P, Morgello S, Caro S, Kaufmann H (1997) The distribution of Lewy bodies in pure autonomic failure: autopsy findings and review of the literature. Acta Neuropathol 94:192–196

    Article  CAS  PubMed  Google Scholar 

  14. Peng C, Gathagan RJ, Covell DJ et al (2018) Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies. Nature 557:558–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shahnawaz M, Mukherjee A, Pritzkow S et al (2020) Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woerman AL (2021) Strain diversity in neurodegenerative disease: an argument for a personalized medicine approach to diagnosis and treatment. Acta Neuropathol 142:1–3

    Article  PubMed  Google Scholar 

  17. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870

    Article  PubMed  Google Scholar 

  18. Koga S, Aoki N, Uitti RJ et al (2015) When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology 85:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huppertz HJ, Moller L, Sudmeyer M et al (2016) Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov Disord 31:1506–1517

    Article  PubMed  Google Scholar 

  20. Meijer FJ, Aerts MB, Abdo WF et al (2012) Contribution of routine brain MRI to the differential diagnosis of parkinsonism: a 3 year prospective follow-up study. J Neurol 259:929–935

    Article  PubMed  Google Scholar 

  21. Saeed U, Lang AE, Masellis M (2020) Neuroimaging advances in Parkinson’s disease and atypical parkinsonian syndromes. Front Neurol 11:572976

    Article  PubMed  PubMed Central  Google Scholar 

  22. Worker A, Blain C, Jarosz J et al (2014) Diffusion tensor imaging of Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study. PLoS ONE 9:e112638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Abdo WF, van de Warrenburg BP, Munneke M et al (2006) CSF analysis differentiates multiple-system atrophy from idiopathic late-onset cerebellar ataxia. Neurology 67:474–479

    Article  CAS  PubMed  Google Scholar 

  24. Hall S, Ohrfelt A, Constantinescu R et al (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69:1445–1452

    Article  PubMed  Google Scholar 

  25. Wang SY, Chen W, Xu W et al (2019) Neurofilament light chain in cerebrospinal fluid and blood as a biomarker for neurodegenerative diseases: a systematic review and meta-analysis. J Alzheimers Dis 72:1353–1361

    Article  PubMed  Google Scholar 

  26. Abdo WF, Bloem BR, Van Geel WJ, Esselink RA, Verbeek MM (2007) CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol Aging 28:742–747

    Article  CAS  PubMed  Google Scholar 

  27. Abdo WF, van de Warrenburg BP, Kremer HP, Bloem BR, Verbeek MM (2007) CSF biomarker profiles do not differentiate between the cerebellar and parkinsonian phenotypes of multiple system atrophy. Parkinsonism Relat Disord 13:480–482

    Article  CAS  PubMed  Google Scholar 

  28. Singer W, Schmeichel AM, Shahnawaz M et al (2020) Alpha-synuclein oligomers and neurofilament light chain in spinal fluid differentiate multiple system atrophy from lewy body synucleinopathies. Ann Neurol 88(3):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singer W, Schmeichel AM, Shahnawaz M et al (2021) Alpha-synuclein oligomers and neurofilament light chain predict phenoconversion of pure autonomic failure. Ann Neurol 89:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE (2013) Alpha-synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 73:155–169

    Article  CAS  PubMed  Google Scholar 

  31. Shi M, Bradner J, Hancock AM et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69:570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tokuda T, Qureshi MM, Ardah MT et al (2010) Detection of elevated levels of alpha-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75:1766–1772

    Article  CAS  PubMed  Google Scholar 

  33. Tokuda T, Salem SA, Allsop D et al (2006) Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem Biophys Res Commun 349:162–166

    Article  CAS  PubMed  Google Scholar 

  34. Outeiro TF, Putcha P, Tetzlaff JE et al (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS ONE 3:e1867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tetzlaff JE, Putcha P, Outeiro TF et al (2008) CHIP targets toxic alpha-Synuclein oligomers for degradation. J Biol Chem 283:17962–17968

    Article  CAS  PubMed  Google Scholar 

  36. Shahnawaz M, Tokuda T, Waragai M et al (2017) Development of a biochemical diagnosis of parkinson disease by detection of alpha-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol 74:163–172

    Article  PubMed  Google Scholar 

  37. Kang UJ, Boehme AK, Fairfoul G et al (2019) Comparative study of cerebrospinal fluid alpha-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov Disord 34:536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prusiner SB, Woerman AL, Mordes DA et al (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112:E5308-5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21:1332–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woerman AL, Stohr J, Aoyagi A et al (2015) Propagation of prions causing synucleinopathies in cultured cells. Proc Natl Acad Sci U S A 112:E4949-4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soto C, Saborio GP, Anderes L (2002) Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci 25:390–394

    Article  CAS  PubMed  Google Scholar 

  42. Fairfoul G, McGuire LI, Pal S et al (2016) Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol 3:812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poggiolini I, Gupta V, Lawton M et al (2022) Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies. Brain 145:584–595

    Article  PubMed  Google Scholar 

  44. Rossi M, Candelise N, Baiardi S et al (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for lewy body-associated synucleinopathies. Acta Neuropathol 140(9):49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Valbuena I, Visanji NP, Kim A et al (2022) Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Transl Neurodegener 11:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iranzo A, Fairfoul G, Ayudhaya ACN et al (2021) Detection of alpha-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol 20:203–212

    Article  CAS  PubMed  Google Scholar 

  47. Dutta S, Hornung S, Kruayatidee A et al (2021) alpha-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy. Acta Neuropathol 142:495–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang C, Hopfner F, Katsikoudi A et al (2020) Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 91:720–729

    Article  PubMed  Google Scholar 

  49. Yu Z, Shi M, Stewart T et al (2020) Reduced oligodendrocyte exosome secretion in multiple system atrophy involves SNARE dysfunction. Brain 143:1780–1797

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author wishes to thank his mentor Phillip Low, his research team, and research collaborators who were all instrumental for the successful completion of this work and the award received. He also wishes to acknowledge the following funding sources: NIH (R01NS092625, U19 AG71754, UL1TR000135), FDA (FD-R-07290), Michael J. Fox Foundation for Parkinson’s disease, American Parkinson Disease Association, Bishop Dr. Karl Golser Foundation, Sturm Foundation, Mayo Center for Regenerative Medicine, and Mayo Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Singer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singer, W. Recent advances in establishing fluid biomarkers for the diagnosis and differentiation of alpha-synucleinopathies – a mini review. Clin Auton Res 32, 291–297 (2022). https://doi.org/10.1007/s10286-022-00882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-022-00882-1

Keywords

Navigation