Skip to main content

Advertisement

Log in

Glomerulus Detection Using Segmentation Neural Networks

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Digital pathology is vital for the correct diagnosis of kidney before transplantation or kidney disease identification. One of the key challenges in kidney diagnosis is glomerulus detection in kidney tissue segments. In this study, we propose a deep learning–based method for glomerulus detection from digitized kidney slide segments. The proposed method applies models based on convolutional neural networks to detect image segments containing the glomerulus region. We employ various networks such as ResNets, UNet, LinkNet, and EfficientNet to train the models. In our experiments on a network trained on the NIH HuBMAP kidney whole slide image dataset, the proposed method achieves the highest scores with Dice coefficient of 0.942.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The results obtained in this paper are based upon data generated by the NIH Human BioMolecular Atlas Program (HuBMAP). The images used in the paper are available at https://portal.hubmapconsortium.org.

References

  1. Bueno, G., Fernandez-Carrobles, M.M., Deniz, O., Garca-Rojo, M.: New trends of emerging technologies in digital pathology. Pathobiology 83(2-3), 61–69 (2016)

    Article  PubMed  Google Scholar 

  2. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of pathology informatics 7 (2016)

  3. Hughson, M.D., Puelles, V.G., Hoy, W.E., Douglas-Denton, R.N., Mott, S.A., Bertram, J.F.: Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race. Nephrology Dialysis Transplantation 29(7), 1399–1409 (2014)

    Article  Google Scholar 

  4. Rasch, R., Lauszus, F., Thomsen, J.S., Flyvbjerg, A.: Glomerular structural changes in pregnant, diabetic, and pregnant-diabetic rats. Apmis 113(7-8), 465–472 (2005)

    Article  PubMed  Google Scholar 

  5. Wang, H., Roa, A.C., Basavanhally, A.N., Gilmore, H.L., Shih, N., Feldman, M., Tomaszewski, J., Gonzalez, F., Madabhushi, A.: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. Journal of Medical Imaging 1(3), 034003 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malon, C.D., Cosatto, E.: Classification of mitotic figures with convolutional neural networks and seeded blob features. Journal of pathology informatics 4 (2013)

  7. Xu, K., Zhu, L., Wang, R., Liu, C., Zhao, Y.: Su-f-j-04: Automated detection of diabetic retinopathy using deep convolutional neural networks. Medical Physics 43(6Part8), 3406–3406 (2016)

  8. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Medical image analysis 35, 18–31 (2017)

    Article  PubMed  Google Scholar 

  9. Lee, H.-C., Aqil, A.F.: Combination of transfer learning methods for kidney glomeruli image classification. Applied Sciences 12(3) (2022). https://doi.org/10.3390/app12031040

  10. Gallego, J., Pedraza, A., Lopez, S., Steiner, G., Gonzalez, L., Laurinavicius, A., Bueno, G.: Glomerulus classification and detection based on convolutional neural networks. Journal of Imaging 4(1), 20 (2018)

    Article  Google Scholar 

  11. Ledbetter, D., Ho, L., Lemley, K.V.: Prediction of kidney function from biopsy images using convolutional neural networks. arXiv preprint arXiv:1702.01816 (2017)

  12. Cascarano, G.D., Debitonto, F.S., Lemma, R., Brunetti, A., Buongiorno, D., De Feudis, I., Guerriero, A., Rossini, M., Pesce, F., Gesualdo, L., : An innovative neural network framework for glomerulus classification based on morphological and texture features evaluated in histological images of kidney biopsy. In: International Conference on Intelligent Computing, pp. 727–738 (2019). Springer

  13. Kawazoe, Y., Shimamoto, K., Yamaguchi, R., Shintani-Domoto, Y., Uozaki, H., Fukayama, M., Ohe, K.: Faster r-cnn-based glomerular detection in multistained human whole slide images. Journal of Imaging 4(7), 91 (2018)

    Article  Google Scholar 

  14. Ginley, B., Lutnick, B., Jen, K.-Y., Fogo, A.B., Jain, S., Rosenberg, A., Walavalkar, V., Wilding, G., Tomaszewski, J.E., Yacoub, R., : Computational segmentation and classification of diabetic glomerulosclerosis. Journal of the American Society of Nephrology 30(10), 1953–1967 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsh, J.N., Matlock, M.K., Kudose, S., Liu, T.-C., Stappenbeck, T.S., Gaut, J.P., Swamidass, S.J.: Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE transactions on medical imaging 37(12), 2718–2728 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Karpinski, J., Lajoie, G., Cattran, D., Fenton, S., Zaltzman, J., Cardella, C., Cole, E.: Outcome of kidney transplantation from high-risk donors is determined by both structure and function. Transplantation 67(8), 1162–1167 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25, 1097–1105 (2012)

    Google Scholar 

  18. Gadermayr, M., Dombrowski, A.-K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting whole slide images of the kidney. CoRR (2017)

  19. Ma, J., Zhang, J., Hu, J.: Glomerulus extraction by using genetic algorithm for edge patching. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2474–2479 (2009). IEEE

  20. Hirohashi, Y., Relator, R., Kakimoto, T., Saito, R., Horai, Y., Fukunari, A., Kato, T.: Automated quantitative image analysis of glomerular desmin immunostaining as a sensitive injury marker in spontaneously diabetic torii rats. J Biomed Image Process 1(1), 20–8 (2014)

    Google Scholar 

  21. Kakimoto, T., Okada, K., Fujitaka, K., Nishio, M., Kato, T., Fukunari, A., Utsumi, H.: Quantitative analysis of markers of podocyte injury in the rat puromycin aminonucleoside nephropathy model. Experimental and Toxicologic Pathology 67(2), 171–177 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005). Ieee

  23. Kato, T., Relator, R., Ngouv, H., Hirohashi, Y., Takaki, O., Kakimoto, T., Okada, K.: Segmental hog: new descriptor for glomerulus detection in kidney microscopy image. Bmc Bioinformatics 16(1), 1–16 (2015)

    Article  Google Scholar 

  24. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

  25. Kotyk, T., Dey, N., Ashour, A.S., Balas-Timar, D., Chakraborty, S., Ashour, A.S., Tavares, J.M.R.: Measurement of glomerulus diameter and bowman’s space width of renal albino rats. Computer methods and programs in biomedicine 126, 143–153 (2016)

    Article  PubMed  Google Scholar 

  26. Marée, R., Dallongeville, S., Olivo-Marin, J.-C., Meas-Yedid, V.: An approach for detection of glomeruli in multisite digital pathology. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1033–1036 (2016). IEEE

  27. Temerinac-Ott, M., Forestier, G., Schmitz, J., Hermsen, M., Bräsen, J., Feuerhake, F., Wemmert, C.: Detection of glomeruli in renal pathology by mutual comparison of multiple staining modalities. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, pp. 19–24 (2017). IEEE

  28. Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. International Journal of Computer Vision 11(3), 283–318 (1993)

    Article  Google Scholar 

  29. Hermsen, M., de Bel, T., Den Boer, M., Steenbergen, E.J., Kers, J., Florquin, S., Roelofs, J.J., Stegall, M.D., Alexander, M.P., Smith, B.H., : Deep learning–based histopathologic assessment of kidney tissue. Journal of the American Society of Nephrology 30(10), 1968–1979 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, M., Wu, T., Bennett, K.M.: A novel hessian based algorithm for rat kidney glomerulus detection in 3d mri. In: Medical Imaging 2015: Image Processing, vol. 9413, p. 94132 (2015). International Society for Optics and Photonics

  31. Consortium, H., : The human body at cellular resolution: the NIH human biomolecular atlas program. Nature 574(7777), 187 (2009)

  32. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019). PMLR

  33. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for buomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer

  34. Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 234–241 (2017). IEEE

  35. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR, ??? (2019). http://proceedings.mlr.press/v97/tan19a.html

  36. Tustison, N., Gee, J.: Introducing dice, jaccard, and other label overlap measures to ITK. Insight J 2 (2009)

  37. Altini, N., Cascarano, G.D., Brunetti, A., Marino, F., Rocchetti, M.T., Matino, S., Venere, U., Rossini, M., Pesce, F., Gesualdo, L., Bevilacqua, V.: Semantic segmentation framework for glomeruli detection and classification in kidney histological sections. Electronics 9(3), 503 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the study. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Surender Singh Samant.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh Samant, S., Chauhan, A., DN, J. et al. Glomerulus Detection Using Segmentation Neural Networks. J Digit Imaging 36, 1633–1642 (2023). https://doi.org/10.1007/s10278-022-00764-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00764-y

Keywords

Navigation