Skip to main content

Advertisement

Log in

Automatic Segmentation and Measurement of Choroid Layer in High Myopia for OCT Imaging Using Deep Learning

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Automatic segmentation and measurement of the choroid layer is useful in studying of related fundus diseases, such as diabetic retinopathy and high myopia. However, most algorithms are not helpful for choroid layer segmentation due to its blurred boundaries and complex gradients. Therefore, this paper aimed to propose a novel choroid segmentation method that combines image enhancement and attention-based dense (AD) U-Net network. The choroidal images obtained from optical coherence tomography (OCT) are pre-enhanced by algorithms that include flattening, filtering, and exponential and linear enhancement to reduce choroid-independent information. Experimental results obtained from 800 OCT B-scans of the choroid layers from both normal eyes and high myopia showed that image enhancement significantly increased the performance of ADU-Net, with an AUC of 99.51% and a DSC of 97.91%. The accuracy of segmentation using the ADU-Net method with image enhancement is superior to that of the existing networks. In addition, we describe some algorithms that can measure automatically choroidal foveal thickness and the volume of adjacent areas. Statistical analyses of the choroidal parameters variation indicated that compared with normal eyes, high myopia has a reduction of 86.3% of the choroidal foveal thickness and 90% of the adjacent volume. It proved that high myopia is likely to cause choroid layer attenuation. These algorithms would have wide application in the diagnosis and precaution of related fundus lesions caused by choroid thinning from high myopia in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Code Availability

The code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT: Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol 116(5): 653–658, 1998

    Article  CAS  PubMed  Google Scholar 

  2. El-Shazly AA, Farweez YA, ElSebaay ME, El-Zawahry, WM: Correlation between choroidal thickness and degree of myopia assessed with enhanced depth imaging optical coherence tomography. European journal of ophthalmology 27(5): 577–584, 2017

    Article  PubMed  Google Scholar 

  3. Vupparaboina KK, Richhariya A, Chhablani J, Jana S: Optical coherence tomography imaging: Automated binarization of choroid for stromal-luminal analysis. In: 2016 International Conference on Signal and Information Processing (IConSIP), 2016, pp. 1–5

  4. Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, Chen C, Xu J, Wang Y, Zhou J, You QS: Subfoveal choroidal thickness: The Beijing Eye Study. Ophthalmol 120(1): 175–180, 2013

    Article  Google Scholar 

  5. Hotchkiss ML, Fine SL: Pathologic myopia and choroidal neovascularization. Am J Ophthalmol 91(2): 177–183, 1981

    Article  CAS  PubMed  Google Scholar 

  6. Spaide RF, Koizumi H, Pozonni MC: Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography. Am J Ophthalmol 146(4): 496–500, 2008

    Article  PubMed  Google Scholar 

  7. Chung SE, Kang SW, Lee JH., Kim YT: Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmol 118(5): 840–845, 2011

    Article  Google Scholar 

  8. Maruko I, Iida T, Sugano Y, Ojima A, Sekiryu T: Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. Retina 31(8): 1603–1608, 2011

    Article  PubMed  Google Scholar 

  9. Raja H, Akram MU, Shaukat A, Khan SA, Alghamdi N, Khawaja SG, Nazir N: Extraction of retinal layers through convolution neural network (CNN) in an OCT image for glaucoma diagnosis. J. Digital Imaging 33(6):1428-1442, 2020

    Article  Google Scholar 

  10. Sappa LB, Okuwobi IP, Li M, Zhang Y, Xie S, Yuan S, Chen Q: RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network. J. Digital Imaging: 1–14, 2021

  11. Tian J, Marziliano P, Baskaran M, Tun TA, Aung T: Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomed. Opt. Express 4(3): 397–411, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans. Med. Imaging 30(2): 484–496, 2011

    Article  PubMed  Google Scholar 

  13. Garvin MK, Abràmoff MD, Kardon R, Russell SR, Wu X, Sonka M: Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans. Med. Imaging 27(10): pp. 1495–1505, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18): 19413–19428, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang Q, Reisman CA, Wang Z, Fukuma Y, Hangai M, Yoshimura N, Tomidokoro A, Araie M, Raza A, Hood D, Chan K: Automated layer segmentation of macular OCT images using dual-scale gradient information. Opt. Express, 18(20): 21293–21307, 2010

    Article  PubMed  Google Scholar 

  16. Koozekanani D, Boyer K, Roberts C: Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans. Med. Imaging 20(9): 900–916, 2001

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Lee K, Niemeijer M, Mullins R F, Sonka M, MD Abràmoff: Automated segmentation of the choroid from clinical SD-OCT. Investig. Ophthalmol. Vis. Sci. 53(12): 7510–7519, 2012

    Article  Google Scholar 

  18. Kajić V, Esmaeelpour M, Považay B, Marshall D, Rosin PL, Drexler W: Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed. Opt. Express 3(1): 86–103, 2012

    Article  PubMed  Google Scholar 

  19. Shan F , Gao Y, Wang J, Shi,W, Shi N, Han M, Xue Z, Shen D, Shi Y: Lung Infection Quantification of COVID-19 in CT Image with Deep Learning, arXiv preprint arXiv:2003.04655, 2020

  20. Baumgartner CF, Koch LM, Pollefeys M, Konukoglu E: An exploration of 2D and 3D deep learning techniques for cardiac MR Image segmentation. In: International Workshop on Statistical Atlases and Computational Models of the Heart, 2017, pp. 234–241

  21. Fang L, Cunefare D, Wang C, Guymer R H, Li S, Farsiu S: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5): 2732–2744, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241

  23. He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. In: European conference on computer vision (ECCV), 2016, pp. 630–645

  24. He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016, pp. 770–778

  25. Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ: Deep Networks with Stochastic Depth, Deep networks with stochastic depth. In: European conference on computer vision (ECCV), 2016, pp. 646–661

  26. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2017, pp. 2261–2269

  27. Wei Z, Song H, Chen L, Li Q, Han G: Attention-based denseunet network with adversarial training for skin lesion segmentation. IEEE Access 7: 136616–136629, 2019

    Article  Google Scholar 

  28. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D: Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 53: 197–207, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thomas E, Pawan S J, Kumar S, Horo A, Niyas S, Vinayagamani S, Kesavadas C, Rajan, J: Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images. IEEE J. Biomed. Heal. Informatic, 25(5): 1724–1734, 2020

    Article  Google Scholar 

  30. Wang RK: Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues. Phys. Med. Biol. 47(13): 2281–2299, 2002

    Article  PubMed  Google Scholar 

  31. Kirby MA, Li C, Choi W J, Gregori G, Rosenfeld P, Wang R: Why choroid vessels appear dark in clinical OCT images. In: Ophthalmic technologies XXVIII, 2018, pp. 1047428

  32. Kajić V, Esmaeelpour M, Glittenberg C, Kraus M F, Honegger J, Othara R, Binder S, Fujimoto JG, Drexler W: Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data. Biomed. Opt. Express 4(1): 134–150, 2013

    Article  PubMed  Google Scholar 

  33. Beaton L, Mazzaferri J, Lalonde F, Hidalgo-Aguirre M, Descovich D, Lesk MR, Costantino S: Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging. Biomed. Opt. Express 6(5): 1694-1706, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Q, Fan W, Niu S, Shi J, Shen H, Yuan S: Automated choroid segmentation based on gradual intensity distance in HD-OCT images. Opt. Express 23(7): 8974–8994, 2015

    Article  PubMed  Google Scholar 

  35. Duan L, Hong Y J, Yasuno Y: Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography. Opt. Express 21(13): 15787–15808, 2013

    Article  PubMed  Google Scholar 

  36. Mazzaferri J, Beaton L, Hounye G, Sayah D N, Costantino S: Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions. Sci. Rep. 7(1): 1–10, 2017

    Article  Google Scholar 

  37. Jeelani H, Martin J, Vasquez F, Salerno M, Weller DS: Image quality affects deep learning reconstruction of MRI. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), 2018, pp. 357–360

  38. Maruyama T, Hayashi N, Sato Y, Hyuga S, Wakayama Y, Watanabe H, Akio O, Ogura T: Comparison of medical image classification accuracy among three machine learning methods. J. Xray. Sci. Technol 26(6): 885–893, 2018

    PubMed  Google Scholar 

  39. Dodge S, Karam L: Understanding how image quality affects deep neural networks. In: 2016 eighth international conference on quality of multimedia experience (QoMEX), 2016, pp. 1–6

  40. Roy P, Ghosh S, Bhattacharya S, Pal U: Effects of degradations on deep neural network architectures. arXiv preprint arXiv:1807.10108, 2018

  41. da Costa GBP, Contato WA, Nazare TS, Neto JE, Ponti M: An empirical study on the effects of different types of noise in image classification tasks. arXiv preprint arXiv:1609.02781, 2016

  42. Gerig G, Kubler O, Kikinis R, Jolesz FA: Nonlinear Anisotropic Filtering of MRI Data. IEEE Trans. Med. Imaging 11(2): 221–232, 1992

    Article  CAS  PubMed  Google Scholar 

  43. Girard MJ, Strouthidis NG, Ethier CR, Mari JM: Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Investig. Ophthalmol. Vis. Sci. 52(10): 7738–7748, 2011

    Article  Google Scholar 

  44. Alonso-Caneiro D, Read SA, Collins MJ: Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed. Opt. Express 4(12): 2795–2812, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  45. Otsu N: Post traumatic deformity of anterior permanent teeth and related therapeutic difficulties. IEEE Trans. SYSTREMS, MAN, Cybern 9(1): 62–66, 1979

  46. Castellanos P, del Angel PL, Medina V: Deformation of MR images using a local linear transformation. In: Medical Imaging 2001: Image Processing. International Society for Optics and Photonics, 2001, pp. 909–916

  47. Loffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: International conference on machine learning, 2015, pp. 448–456

  48. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X: TensorFlow: A System for Large-Scale Machine Learning Martín. In: Proc. 12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI’ 16), 2016, pp. 256–283

  49. Kingma DP, Ba JL: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2015

  50. Resheff YS, Mandelbaum A, Weinshall D: Every untrue label is untrue in its own way: Controlling error type with the log bilinear loss, arXiv preprint arXiv:1704.06062, 2017

  51. Li S, Dong M, Du G, Mu X: Attention Dense-U-Net for Automatic Breast Mass Segmentation in Digital Mammogram,” IEEE Access 7: 59037–59047, 2019

    Article  Google Scholar 

  52. Diakogiannis FI, Waldner F, Caccetta P, Wu C: ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 162: 94–114, 2020

    Article  Google Scholar 

  53. Ni ZL, Bian GB, Zhou XH, Hou ZG, Xie XL, Wang C, Zhou YZ, Li RQ, Li Z: RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments. In: International Conference on Neural Information Processing, 2019, pp. 139–149

  54. Kaku A, Hegde CV, Huang J, Chung S, Wang X, Young M, Radmanesh A, Lui YW, Razavian N: Darts: Denseunet-based automatic rapid tool for brain segmentation. arXiv preprint arXiv:1911.05567, 2017

  55. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF: Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Highly Myopic Eyes. Am. J. Ophthalmol 148(3): 445–450, 2009

    Article  PubMed  Google Scholar 

  56. Tsamardinos I, Brown LE, Aliferis CF: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1): 31–78, 2006

    Article  Google Scholar 

  57. Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, Prince J L: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Express 4(7): 1133-1152, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tan CS, Cheong KX, Lim LW, Li KZ: Topographic variation of choroidal and retinal thicknesses at the macula in healthy adults. Br. J. Ophthalmol 98(3): 339-344, 2014

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Key-Area Research and Development Program of Guangdong Province (No.2020B1111040001), National Natural Science Foundation of China (NSFC) (No. 61805038, 62075042, 61705036, 61771139), and Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No. 2020B1212030010).

Author information

Authors and Affiliations

Authors

Contributions

Xiangcong Xu, Xuehua Wang, Ke Xiong, and Dingan Han designed the study. Xuehua Wang, Xiangcong Xu, and Jingyi Lin wrote the manuscript. Xiangcong Xu wrote the algorithm and performed the experiments. All the authors planned experiments and contributed to writing the paper.

Corresponding authors

Correspondence to Xuehua Wang, Ke Xiong or Dingan Han.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors agree to publication in the Journal of Digital Imaging.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, X., Lin, J. et al. Automatic Segmentation and Measurement of Choroid Layer in High Myopia for OCT Imaging Using Deep Learning. J Digit Imaging 35, 1153–1163 (2022). https://doi.org/10.1007/s10278-021-00571-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-021-00571-x

Keywords

Navigation