Skip to main content

Advertisement

Log in

The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of Ktrans. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (ve > 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (Ktrans, ve) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khalifa F, Soliman A, El-Baz A, Abou El-Ghar M, El-Diasty T, Gimel’farb G, et al: Models and methods for analyzing DCE-MRI: A review. Med Phys 41:124301,2014. https://doi.org/10.1118/1.4898202

    Article  PubMed  Google Scholar 

  2. Wang C-H: Review of treatment assessment using DCE-MRI in breast cancer radiation therapy. World J Methodol 4:46,2014. https://doi.org/10.5662/wjm.v4.i2.46

    Article  PubMed  PubMed Central  Google Scholar 

  3. O’connor J, Jackson A, Parker G, Jayson GC: DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents ANGIOGENESIS: A TARGET FOR ANTICANCER THERAPY. Br J Cancer 96:189–95,2007. https://doi.org/10.1038/sj.bjc.6603515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giger ML, Karssemeijer N, Schnabel JA. Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer. Annu Rev Biomed Eng 15:327–57,2013. https://doi.org/10.1146/annurev-bioeng-071812-152416

    Article  CAS  PubMed  Google Scholar 

  5. Dmitriev ID, Loo CE, Vogel W V, Pengel KE, Gilhuijs AKG: Fully automated deformable registration of breast DCE-MRI and PET/CT. Phys Med Biol 58:1221–33,2013. https://doi.org/10.1088/0031-9155/58/4/1221

    Article  CAS  PubMed  Google Scholar 

  6. Denton ER, Sonoda LI, Rueckert D, Rankin SC, Hayes C, Leach MO, et al: Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images. J Comput Assist Tomogr 23:800–5,1999. https://doi.org/10.1097/00004728-199909000-00031

    Article  CAS  PubMed  Google Scholar 

  7. Hill A, Mehnert A, Crozier S, McMahon K: Evaluating the accuracy and impact of registration in dynamic contrast-enhanced breast MRI. Concepts Magn Reson Part B Magn Reson Eng 35:106–20,2009. https://doi.org/10.1002/cmr.b.20133

    Article  Google Scholar 

  8. Rueckert D, Sonodaa LI, Denton E, Rankina S, Hayesc C, Leachc M, et al: Comparison and evaluation of rigid and non-rigid registration of breast MR images. Med Imaging 99:3661,1999, p. 78–88

    Google Scholar 

  9. Schäfer S, Preim U, Glaßer S, Preim B, Tönnies K: Local similarity measures for lesion registration in DCE - MRI of the breast. Ann BMVA 2011:1–13,2011

    Google Scholar 

  10. Martel AL, Froh MS, Brock KK, Plewes DB, Barber DC: Evaluating an optical-flow-based registration algorithm for contrast-enhanced magnetic resonance imaging of the breast. Phys Med Biol 52:3803–16,2007. https://doi.org/10.1088/0031-9155/52/13/010.

    Article  CAS  PubMed  Google Scholar 

  11. Woolf DK, Taylor NJ, Makris A, Tunariu N, Collins DJ, Li SP, et al: Arterial input functions in dynamic contrast-enhanced magnetic resonance imaging: which model performs best when assessing breast cancer response? Br J Radiol 89:20150961,2016. https://doi.org/10.1259/bjr.20150961

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–21,1999. https://doi.org/10.1109/42.796284

    Article  CAS  PubMed  Google Scholar 

  13. Tanner C, Schnabel JA., Hill DLG, Hawkes DJ, Degenhard A, Leach MO, et al: Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mammography. Med Phys 34:1221,2007. https://doi.org/10.1118/1.2712040

    Article  PubMed  Google Scholar 

  14. Chebrolu VV, Shanbhag D, Bedair R, Gupta S, Hervo P, Reid S, et al: Impact of non-rigid motion correction on pharmaco-kinetic analysis for breast dynamic contrast-enhanced MRI. Proc 23rd Sci Meet Int Soc Magn Reson Med 2015:668

  15. Guidolin K, Lock M, Yaremko B, Gelman N, Gaede S, Kornecki A, et al: A phase II trial to evaluate single-dose stereotactic body radiation therapy (SBRT) prior to surgery for early-stage breast carcinoma: SIGNAL (stereotactic image-guided neoadjuvant ablative radiation then lumpectomy) trial. J Radiat Oncol 4:423–30,2015. https://doi.org/10.1007/s13566-015-0227-2.

    Article  CAS  Google Scholar 

  16. Johnson HJ, Mccormick MM, Ibanez L: The ITK Software Guide Book 1: Introduction and Development Guidelines Fourth Edition Updated for ITK version 4. 8 2015. https://itk.org/

  17. Parker GJM, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, et al: Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000,2006. https://doi.org/10.1002/mrm.21066

    Article  PubMed  Google Scholar 

  18. Patrick JC, Terry Thompson R, So A, Butler J, Faul D, Stodilka RZ, et al: Technical Note: Comparison of megavoltage, dual-energy, and single-energy CT-based μ-maps for a four-channel breast coil in PET/MRI. Med Phys 44:4758–65,2017. https://doi.org/10.1002/mp.12407

    Article  PubMed  Google Scholar 

  19. Johnson HJ, Harris G, Williams K, Williams NK, Williams K: BRAINSFit: Mutual Information Rigid Registrations of Whole-Brain 3D Images, Using the Insight Toolkit. 2007.

  20. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–41,2012. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kikinis R, Pieper SD, Vosburgh KG: 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. Intraoperative Imaging Image-Guided Ther 2014. https://doi.org/10.1007/978-1-4614-7657-3_19

  22. Kapur T, Pieper S, Fedorov A, Fillion-Robin JC, Halle M, O’Donnell L, et al. Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience. Med Image Anal 2016. https://doi.org/10.1016/j.media.2016.06.035

  23. Melbourne A, Hipwell J, Modat M, Mertzanidou T, Huisman H, Ourselin S, et al: The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI. Phys Med Biol 56:7693–708,2011. https://doi.org/10.1088/0031-9155/56/24/001

    Article  CAS  PubMed  Google Scholar 

  24. Otsu N: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9:62–6,1979. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  25. Tofts P, Gunnar B, Buckley DL, Evelhoch JL, Henderson E, Knopp M V, et al: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging 10:223–32,1999

    Article  CAS  Google Scholar 

  26. Tofts PS, Parker GJM: DCE-MRI: Acquisition and analysis techniques. In: Barker P, Golay X, Zaharchuk G, Eds. Clin. Perfus. MRI Tech. Appl., vol. 9781107013, Cambridge: Cambridge University Press, 2010, pp 58–74. https://doi.org/10.1017/CBO9781139004053.006

  27. Hayes C, Padhani AR, Leach MO: Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 15:154–63,2002. https://doi.org/10.1002/nbm.756

    Article  PubMed  Google Scholar 

  28. Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ, Kelley MC, et al: Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer : initial results. Magn Reson Imaging 25:1–13,2007. https://doi.org/10.1016/j.mri.2006.09.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Siemens Canada for supplying the breast coil used in this study.

Funding

The authors would also like to acknowledge grant funding from the Ontario Research Fund–Research Excellence (OCAIRO Project RE-04-026), the Canadian institutes of Health Research (149080), and the Breast Cancer Society of Canada for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Mouawad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouawad, M., Biernaski, H., Brackstone, M. et al. The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer. J Digit Imaging 33, 1065–1072 (2020). https://doi.org/10.1007/s10278-020-00374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-020-00374-6

Keywords

Navigation