Skip to main content
Log in

An Embedded Multi-branch 3D Convolution Neural Network for False Positive Reduction in Lung Nodule Detection

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Numerous lung nodule candidates can be produced through an automated lung nodule detection system. Classifying these candidates to reduce false positives is an important step in the detection process. The objective during this paper is to predict real nodules from a large number of pulmonary nodule candidates. Facing the challenge of the classification task, we propose a novel 3D convolution neural network (CNN) to reduce false positives in lung nodule detection. The novel 3D CNN includes embedded multiple branches in its structure. Each branch processes a feature map from a layer with different depths. All of these branches are cascaded at their ends; thus, features from different depth layers are combined to predict the categories of candidates. The proposed method obtains a competitive score in lung nodule candidate classification on LUNA16 dataset with an accuracy of 0.9783, a sensitivity of 0.8771, a precision of 0.9426, and a specificity of 0.9925. Moreover, a good performance on the competition performance metric (CPM) is also obtained with a score of 0.830. As a 3D CNN, the proposed model can learn complete and three-dimensional discriminative information about nodules and non-nodules to avoid some misidentification problems caused due to lack of spatial correlation information extracted from traditional methods or 2D networks. As an embedded multi-branch structure, the model is also more effective in recognizing the nodules of various shapes and sizes. As a result, the proposed method gains a competitive score on the false positive reduction in lung nodule detection and can be used as a reference for classifying nodule candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Demir Ö, Yılmaz ÇA: Computer-aided detection of lung nodules using outer surface features. Biomed Mater Eng 26(s1):S1213–S1222, 2015

    PubMed  Google Scholar 

  2. Teramoto A, Fujita H, Yamamuro O, Tamaki T: Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43(6):2821–2827, 2016

    Article  Google Scholar 

  3. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel S, Wille MW, Naqibullah M, Sanchez C, van Ginneken B: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging,2016. https://doi.org/10.1109/TMI.2016.2536809

  4. Setio AAA et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13, 2017

    Article  Google Scholar 

  5. Le L, Devarakota P, Vikal S et al.: Computer Aided Diagnosis Using Multilevel Image Features on Large-Scale Evaluation. Lect Notes Comput Sci:161–174, 2013

  6. Aggarwal P, Vig R, Sardana HK: Patient-Wise Versus Nodule-Wise Classification of Annotated Pulmonary Nodules using Pathologically Confirmed Cases. J Comput 8(9), 2013

  7. Jacobs C, van Rikxoort EM, Twellmann T, Scholten ET, de Jong PA, Kuhnigk JM, Oudkerk M, de Koning HJ, Prokop M, Schaefer-Prokop C, van Ginneken B: Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med Image Anal 18:374–384, 2014

    Article  Google Scholar 

  8. Setio AAA, Jacobs C, Gelderblom J, van Ginneken B: Automatic detection of large pulmonary solid nodules in thoracic CT images. Med Phys 42(10):5642–5653, 2015. https://doi.org/10.1118/1.4929562

    Article  PubMed  Google Scholar 

  9. Zagoruyko S, Komodakis N: Wide residual networks. arXiv preprint arXiv:arXiv:1605.07146, 2016

  10. Anirudh R: Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data[C]//. SPIE Medical Imaging:978532, 2016

  11. Huang X, Shan J, Vaidya V: Lung nodule detection in CT using 3D convolutional neural networks[C]// IEEE, International Symposium on Biomedical Imaging. IEEE, 2017

  12. Dou Q, Chen H, Yu L et al.: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng 64(7):1558–1567, 2016

    Article  Google Scholar 

  13. Ioffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015

    Google Scholar 

  14. Santurkar S, Tsipras D, Ilyas A, et al: How Does Batch Normalization Help Optimization?. 2018

    Google Scholar 

  15. Armato III, Samuel G, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP et al.: Data From LIDC-IDRI. Cancer Imaging Arch, 2015. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX

  16. Armato, III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D et al.: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Med Phys 38:915–931, 2011

    Article  Google Scholar 

  17. Eman M, Nourhan Z, Mahmoud F: Automatic Classification of Normal and Cancer Lung CT Images Using Multiscale AM-FM Features. Int J Biomed Imaging 2015:1–7, 2015

    Google Scholar 

  18. Murphy K, van Ginneken B, Schilham AMR, de Hoop BJ, Gietema HA, Prokop M: A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 13:757–770, 2009

    Article  CAS  Google Scholar 

  19. Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C et al.: Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. Pattern Recogn 61:663–673, 2017

    Article  Google Scholar 

  20. Zhu W, et al: Deep lung: 3D deep convolutional nets for automated pulmonary nodule detection and classification, Arxiv 2017 [online]. Avaiable: arXiv: 1709.5538

  21. Shen W, Zhou M, Yang F, Yang C, Tian J: Multi-scale Convolutional Neural Networks for Lung Nodule Classification. Inf Process Med Imaging 24:588–599, 2015

    PubMed  Google Scholar 

  22. Yan X, Pang J, Qi H, Zhu Y, Bai C, Geng X, Liu M, Terzopoulos D, Ding X: Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: A comparison between 2d and 3d strategies. In ACCV, 2016

  23. Farahani FV, Ahmadi A, Zarandi MHF: Lung nodule diagnosis from CT images based on ensemble learning[C]// Computational Intelligence in Bioinformatics & Computational Biology. IEEE, 2015

  24. van Ginneken B, Armato SG, de Hoop B, van de Vorst S, Duindam T, Niemeijer M, Murphy K, Schilham AMR, Retico A, Fantacci ME, Camarlinghi N, Bagagli F, Gori I, Hara T, Fujita H, Gargano G, Belloti R, Carlo FD, Megna R, Tangaro S, Bolanos L, Cerello P, Cheran SC, Torres EL, Prokop M: Comparing and combining algorithms for computeraided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image, 2010

Download references

Acknowledgments

The authors would like to thank the LUNA16 challenge organizers for providing the dataset and evaluation software.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) under Project 61471123 and the Research Foundation of Education Bureau of Hunan Province of China under Project 13C829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Zhou, F. & He, Y. An Embedded Multi-branch 3D Convolution Neural Network for False Positive Reduction in Lung Nodule Detection. J Digit Imaging 33, 846–857 (2020). https://doi.org/10.1007/s10278-020-00326-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-020-00326-0

Keywords

Navigation