Skip to main content

Advertisement

Log in

Dynamic Contrast-Enhanced MRI in the Study of Brain Tumors. Comparison Between the Extended Tofts-Kety Model and a Phenomenological Universalities (PUN) Algorithm

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a well-established technique for studying blood–brain barrier (BBB) permeability that allows measurements to be made for a wide range of brain pathologies, including multiple sclerosis and brain tumors (BT). This latter application is particularly interesting, because high-grade gliomas are characterized by increased microvascular permeability and a loss of BBB function due to the structural abnormalities of the endothelial layer. In this study, we compared the extended Tofts-Kety (ETK) model and an extended derivate class from phenomenological universalities called EU1 in 30 adult patients with different BT grades. A total of 75 regions of interest were manually drawn on the MRI and subsequently analyzed using the ETK and EU1 algorithms. Significant linear correlations were found among the parameters obtained by these two algorithms. The means of R 2 obtained using ETK and EU1 models for high-grade tumors were 0.81 and 0.91, while those for low-grade tumors were 0.82 and 0.85, respectively; therefore, these two models are equivalent. In conclusion, we can confirm that the application of the EU1 model to the DCE-MRI experimental data might be a useful alternative to pharmacokinetic models in the study of BT, because the analytic results can be generated more quickly and easily than with the ETK model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gaitan MI, Shea CD, Evangelou IE, Stone RD, Fenton KM, Bielekova B, Massacesi L, Reich DS: Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 70:22–29, 2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lund H, Krakauer M, Skimminge A, Sellebjerg F, Garde E, Siebner HR, Paulson OB, Hesse D, Hanson LG: Blood–brain barrier permeability of normal appearing white matter in relapsing-remitting multiple sclerosis. PLoS One 8:e56375, 2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E, Prestopnik J, Grossetete M, Shah NJ, Wills J, Qualls C, Rosenberg GA: Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42:2158–2163, 2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kassner A, Mandell DM, Mikulis DJ: Measuring permeability in acute ischemic stroke. Neuroimaging Clin N Am 21:315–325, 2011. x-xi

    Article  PubMed  Google Scholar 

  5. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54:4564–4568, 1994

    CAS  PubMed  Google Scholar 

  6. Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S, Smith JK, Lin W, Ewend MG: Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 12:1232–1240, 2005

    Article  PubMed Central  PubMed  Google Scholar 

  7. Vick NA, Bigner DD: Microvascular abnormalities in virally induced canine brain tumors. Structural bases for altered blood–brain barrier function. J Neurol Sci 17:29–39, 1972

    Article  CAS  PubMed  Google Scholar 

  8. Yankeelov TE, Gore JC: Dynamic contrast-enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3:91–107, 2009

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM: Estimating kinetic parameters from dynamic contrast-enhanced T (1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232, 1999

    Article  CAS  PubMed  Google Scholar 

  10. Buckley DL: Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606, 2002

    Article  PubMed  Google Scholar 

  11. Padhani AR: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422, 2002

    Article  PubMed  Google Scholar 

  12. Harrer JU, Parker GJ, Haroon HA, Buckley DL, Embelton K, Roberts C, Baleriaux D, Jackson A: Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 20:748–757, 2004

    Article  PubMed  Google Scholar 

  13. Bergamino M, Saitta L, Barletta L, Bonzano L, Mancardi GL, Castellan L, Ravetti JL, Roccatagliata L: Measurement of blood–brain barrier permeability with T1-weighted dynamic contrast-enhanced MRI in brain tumors: a comparative study with two different algorithms. ISRN Neuroscience 2013:6 pages, 2013

  14. Bergamino M, Bonzano L, Levrero F, Mancardi GL, Roccatagliata L: A review of technical aspects of T-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors. Phys Med, 2014

  15. Fan X, Medved M, Karczmar GS, Yang C, Foxley S, Arkani S, Recant W, Zamora MA, Abe H, Newstead GM: Diagnosis of suspicious breast lesions using an empirical mathematical model for dynamic contrast-enhanced MRI. Magn Reson Imaging 25:593–603, 2007

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gliozzi AS, Mazzetti S, Delsanto PP, Regge D, Stasi M: Phenomenological universalities: a novel tool for the analysis of dynamic contrast enhancement in magnetic resonance imaging. Phys Med Biol 56:573–586, 2011

    Article  CAS  PubMed  Google Scholar 

  17. Mazzetti S, Gliozzi AS, Bracco C, Russo F, Regge D, Stasi M: Comparison between PUN and Tofts models in the quantification of dynamic contrast-enhanced MR imaging. Phys Med Biol 57:8443–8453, 2012

    Article  CAS  PubMed  Google Scholar 

  18. Castorina P, Delsanto PP, Guiot C: Classification scheme for phenomenological universalities in growth problems in physics and other sciences. Phys Rev Lett 96:188701, 2006

    Article  CAS  PubMed  Google Scholar 

  19. Delsanto PP: Universality of nonclassical nonlinearity: applications to non-destructive evaluations and ultrasonics, New York, 2007

  20. Barberis L, Condat CA, Gliozzi AS, Delsanto PP: Concurrent growth of phenotypic features: a phenomenological universalities approach. J Theor Biol 264:123–129, 2010

    Article  CAS  PubMed  Google Scholar 

  21. Delsanto PP, Gliozzi AS, Guiot C: Scaling, growth and cyclicity in biology: a new computational approach. Theor Biol Med Model 5:5, 2008

    Article  PubMed Central  PubMed  Google Scholar 

  22. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109, 2007

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jenkinson M, Bannister P, Brady M, Smith S: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841, 2002

    Article  PubMed  Google Scholar 

  24. Schabel MC: A unified impulse response model for DCE-MRI. Magn Reson Med 68:1632–1646, 2012

    Article  PubMed  Google Scholar 

  25. Haase A: Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89, 1990

    Article  CAS  PubMed  Google Scholar 

  26. van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC, Taminiau AH, van Coevorden F, Zwinderman AH, Pope TL, Bloem JL: Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233:493–502, 2004

    Article  PubMed  Google Scholar 

  27. Stoyanova R, Huang K, Sandler K, Cho H, Carlin S, Zanzonico PB, Koutcher JA, Ackerstaff E: Mapping tumor hypoxia in vivo using pattern recognition of dynamic contrast-enhanced MRI data. Transl Oncol 5:437–447, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  28. Heller SL, Moy L, Lavianlivi S, Moccaldi M, Kim S: Differentiation of malignant and benign breast lesions using magnetization transfer imaging and dynamic contrast-enhanced MRI. J Magn Reson Imaging 37:138–145, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  29. Franiel T, Hamm B, Hricak H: Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626, 2011

    Article  PubMed  Google Scholar 

  30. Tofts PS, Kermode AG: Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367, 1991

    Article  CAS  PubMed  Google Scholar 

  31. Zhang N, Zhang L, Qiu B, Meng L, Wang X, Hou BL: Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 36:355–363, 2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Eliat PA, Olivie D, Saikali S, Carsin B, Saint-Jalmes H, de Certaines JD: Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int 2012:195176, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  33. Gliozzi AS, Guiot C, Delsanto PP: A new computational tool for the phenomenological analysis of multipassage tumor growth curves. PLoS One 4:e5358, 2009

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gal Y, Mehnert A, Bradley A, McMahon K, Crozier S: An evaluation of four parametric models of contrast enhancement for dynamic magnetic resonance imaging of the breast. Conf Proc IEEE Eng Med Biol Soc 2007:71–74, 2007

    PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Simone Mazzetti (Institute for Cancer Research and Treatment, Candiolo (TO), Italy) for his valuable help with the EU1 algorithm.

Conflicts of Interest

The authors declare that they have no conflicts of interest concerning this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Bergamino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamino, M., Barletta, L., Castellan, L. et al. Dynamic Contrast-Enhanced MRI in the Study of Brain Tumors. Comparison Between the Extended Tofts-Kety Model and a Phenomenological Universalities (PUN) Algorithm. J Digit Imaging 28, 748–754 (2015). https://doi.org/10.1007/s10278-015-9788-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-015-9788-2

Keywords

Navigation